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To Mel Hochster on his 65th birthday

The Monomial Conjecture of Mel Hochster has been one of the most important

open problems in Commutative Algebra for many years. The conjecture is as

follows.

Conjecture. Let R be a Noetherian local ring of dimension d, and suppose

that x1, x2, . . . , xd is a system of parameters for R. Then for all integers t ≥ 0, we

have

xt
1x

t
2 · · ·x

t
d 6∈ (xt+1

1 , . . . , xt+1
d ),

where (xt+1
1 , . . . , xt+1

d ) denotes the ideal generated by xt+1
1 , . . . , xt+1

d .

This conjecture has assumed a central role since it has a very simple statement

and it implies several other important conjectures, notably the Canonical Element

Conjecture, for rings of positive or mixed characteristic. In fact, when this con-

jecture was first announced, it had numerous further consequences, some of which,

such as the New Intersection Conjecture, were proved later by different means. We

refer to Hochster [6] and [10] for descriptions of these conjectures and their status

at various times.

The Monomial Conjecture is almost trivial for rings that contain the rational

numbers and is not difficult for rings of positive charateristic, but it is still an open

problem for rings of mixed characteristic. The most recent advance was made by

Ray Heitmann [5], who proved it in mixed characteristic in dimension 3.

This research was supported by NSF grant 0500588.

1



2 PAUL ROBERTS

One of the traditional methods for approaching this and other conjectures has

been to construct Cohen-Macaulay modules for which a system of parameters for

the ring becomes a regular sequence. While it is unknown whether one can find

finitely generated modules with this property, Hochster many years ago showed

that for equicharacteristic rings one can find infinitely generated modules (and

even algebras) with this property (see Hochster [6]).

In the course of Heitmann’s proof, he shows that a weaker condition than being

a regular sequence suffices to prove these conjectures, and we call a sequence of

elements with this property an almost regular sequence. We give a precise definition

in the next section.

In this paper we first review some of the known facts about almost regular

sequences and then discuss some related questions in the equicharacteristic case.

Finally, we discuss a variation on this concept for rings of mixed characteristic and

its relation to the Monomial Conjecture.

1. Almost regular sequences

The inspiration for the concept of almost regular sequence that we use came

from two sources. The first was the proof of the Monomial Conjecture in dimension

3 by Ray Heitmann mentioned above. The second was the work of Faltings on

p-adic Hodge Theory in Almost étale extensions [1] and the resulting work “Almost

Ring Theory” by Gabber and Ramero [2]. This theory was developed to give

a firm foundation to the results of Faltings, and these ideas have their origins

in a classic work of Tate on p-divisible groups [14]. Our use of this concept is

comparatively simple, but it illustrates the main questions in looking at certain

homological conjectures, as we explain below.

Let A be an integral domain, and let v be a valuation on A with values in the

abelian group of rational numbers. That is, v is a function from A to Q∪{∞} such

that

(1) v(a) = ∞ if and only if a = 0,
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(2) v(ab) = v(a)v(b) for all a, b ∈ A, and

(3) v(a + b) ≥ inf{v(a), v(b)} for all a, b ∈ A.

We will also assume that v(a) ≥ 0 for a ∈ A.

Later in this work we will also consider more general functions that do not satisfy

the first condition.

We note that the following definitions depend on the choice of a valuation, so the

concept of being almost zero depends on this choice. However, we usually assume

we have fixed a valuation and the definitions are in terms of this valuation.

Definition 1. Let A be a ring with a valuation v as above, A-module. We say that

M is almost zero with respect to v if for every m ∈ M and for every ǫ > 0, there

is an a ∈ A with v(a) < ǫ and am = 0.

Definition 2. We say that a sequence x1, . . . , xd is an almost regular sequence

with respect to v if for each i = 1, . . . , d the module

((x1, . . . , xi−1) : xi)/(x1, . . . , xi−1)

is almost zero. If a system of parameters is an almost regular sequence with respect

to v, we say that A is almost Cohen-Macaulay with respect to v.

We note that if we require these modules to be zero rather than almost zero we

have the usual definitions of a regular sequence and a Cohen-Macaulay ring.

While this definition was inspired in part by the work of Gabber and Ramero

[2], it is not quite the same as their definition. They define a module to be almost

zero if it is annihilated by a given ideal m for which m = m2. The corresponding

definition of almost regular would be that ((x1, . . . , xi−1) : xi)/(x1, . . . , xi−1) is

annihilated by m. In many situations their condition is stronger than ours.

We remark also that Hochster and Huneke [8] have defined a closure operation

using this idea, which they call dagger closure, and shown that it agrees with tight

closure in positive characteristic.
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The situation we consider is when A is an integral extension of a Noetherian

ring. Let R be a complete regular local ring of dimension d, and let x1, . . . , xd

be a system of parameters for R. Let R+ denote the integral closure of R in the

algebraic closure of its fraction field; R+ is called the absolute integral closure of R.

The ring A will denote a ring between R and R+; in many cases we take A to be

R+ itself.

2. Almost Cohen-Macaulay rings in the equicharacteristic case

The main question we consider is whether R+ is almost Cohen-Macaulay with

respect to some valuation v. This is easy to prove if R has positive characteristic; in

fact, if S is a normal Noetherian domain of positive characteristic and S∞ denotes

the extension of S obtained by adjoining all pnth roots of elements of S, then S∞

is almost Cohen-Macaulay with respect to any valuation. A proof of this fact can

be found in [13], and we give a brief outline of it here. Like virtually all results of

this type, it uses some version of the following theorem, which we will use again

later.

Theorem 1. Let R be a complete local ring of dimension d. Then there is an ideal

I of R such that

(1) The support of I is the set of prime ideals p for which Rp is not Cohen-

Macaulay.

(2) For every system of parameters x1, . . . , xd of R and every element a of

R with axi ∈ (x1, . . . , xi−1) for some i between 1 and d, we have ca ∈

(x1, . . . , xi−1) for all c ∈ I.

(3) I annihilates the local cohomology Hi
m(R) for i = 0, 1, . . . , d − 1.

.

For a proof of this or a similar fact, we refer to Roberts [12] or Hochster and

Huneke ([9], the discussion at the beginning of section 3).

In the case we are considering, we use that if axi ∈ (x1, . . . , xi−1), then by apply-

ing the Frobenius map one has apn

xpn

i ∈ (xpn

1 , . . . , xpn

i−1), so capn

∈ (xpn

1 , . . . , xpn

i−1)
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for some nonzero element c in S. Taking pnth roots, we have c1/pn

a ∈ (x1, . . . , xi−1).

Since v(c1/pn

) = (1/pn)v(c) goes to 0 as n → ∞, this proves the result for any val-

uation v.

In [9] Hochster and Huneke proved the considerably deeper fact that for an

excellent local domain R of positive characteristic, the ring R+ is Cohen-Macaulay;

see also [11]. We remark that the subring S∞ may not be Cohen-Macaulay in

general.

If R is a local domain containing a field of characteristic zero, then R+ is a big

Cohen-Macaulay algebra only if the dimension of R is at most 2. In fact, if R is a

normal ring of characteristic zero which is not Cohen-Macaulay, then the field trace

map shows that R is a direct summand of any finite extension of R. Consequently

a nontrivial relation on a system of parameters for R remains nontrivial in finite

extensions, and hence also in R+. However, it is not known whether R+ is almost

Cohen-Macaulay with respect to some valuation v when R is a ring of characteristic

zero.

In the paper [13] mentioned above we show that for certain graded rings in

characteristic zero, the image of local cohomology group H2
m(R) in H2

m(R+) is

almost zero. In addition, we compute how this works for two examples in detail.

We discuss here some properties of these examples and further questions that they

suggest.

First of all, both examples are graded integrally closed non-Cohen-Macaulay

domains of dimension 3. The valuation used is the one given by the grading. We

describe the second of these examples in detail.

The simplest way to define this ring is as a Segre product. Let k be an alge-

braically closed field, let A = k[X, Y, Z]/(X3 +Y 3 +Z3), and let B = k[U, V ], both

with the usual gradings. Let R be the Segre product

R = A#B = ⊕n(An ⊗k Bn).
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Then R is a standard graded ring of dimension 3 generated over k by the six

elements X ⊗U, Y ⊗U, Z ⊗U, X ⊗V, Y ⊗V, Z ⊗V of degree 1. By a result of Goto

and Watanabe ([3], Theorem 4.1.5), the local cohomology module H2
m(R) is

H2
m(A)#B = ⊕n(H2

m(A))n ⊗ Bn.

Since B only has nonzero components in nonnegative degrees, the only component

of H2
m(A) in nonnegative degree is in degree zero, and this component is isomorphic

to k, we get H2
m(R) ∼= k. We do not go into the computation of the local cohomology

of R, but we use the fact that it suffices to consider the corresponding element of

H2
m(A) of degree zero and that this element is given by Z2/XY the homology of

the Čech complex

0 → A → AX ⊕ AY → AXY → 0.

This element is not zero in H2
m(A) since Z2 6∈ (X, Y ). It appears to be relevant

in the computations in [13] (although it is not used explicitly), that Z2 is integral

not only over (X, Y ), but over (X, Y )2, and the same holds for the other example

from that paper. Furthermore, one of the few families of examples of non-Cohen-

Macaulay normal domains is in the last section of Heitmann [4], and the dimension

3 examples given there also have the property that for the system of parameters

x, y, z, the given elements a 6∈ (x, y) with za ∈ (x, y) are integral over (x, y)2.

However, the following example, shown to me by Anurag Singh, shows that this is

not necessarily true in general.

Let A = k[X, Y, Z]/(X2 + Y 3 + Z7), where X, Y, Z have degrees 21, 14, and 6.

Then the element Z6/XY defines a nonzero element of H2
m(A) of degree equal to

6 × 6 − 21 − 14 = 1, so by the formula of Goto and Watanabe it defines a nonzero

element H2
m(R), where R = A#k[U, V ] as in the previous example. However, Z6

is not integral over (X, Y )2, since if we divide by the ideal generated by Y , the

image of Z6 is not integral over (X2). Taking the Segre product, this produces an

example in which (x, y, z) is a system of parameters, a 6∈ (x, y) with za ∈ (x, y),

and no representative of a modulo (x, y) is integral over (x, y)2.
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However, for local cohomology coming from Segre products as in these examples

we do have the following theorem.

Theorem 2. Let R be a graded integral domain that is a finite extension of the

polynomial ring k[X, Y ], where X and Y have positive degrees. Let w/XY be an

element of H2
m(R) of nonnegative degree. Then there exists a nonzero constant

c ∈ R such that

cwn ∈ (Xn, Y n)

for all n ≥ 0.

To prove this we let X and Y have degrees i and j respectively, and let w have

degree d; then the fact that w/XY has nonnegative degree implies that d ≥ i + j.

We note that w is integral over k[X, Y ], so there is an integer k such that every

power wn of w can be expressed as

wn = wkfk(X, Y ) + wk−1fk−1(X, Y ) + · · · + f0(X, Y ),

where each fm(X, Y ) is a homogeneous polynomial. The degree of fm(X, Y ) is the

degree of wn minus the degree of wm, which is d(n − m). Let c be any monomial

in X and Y of degree at least dk. We claim that c satisfies the required property.

Using the above expression for wn, it suffices to show that each cfm(X, Y ) is

in (Xn, Y n). Now since fm(X, Y ) has degree d(n − m), cfm(X, Y ) has degree

d(n−m)+dk ≥ dn. Let XrY s be a monomial with nonzero coefficient in cfm(X, Y ).

Then its degree, which is ri + sj, satisfies

ri + sj ≥ dn.

Since d ≥ i + j, this gives

ri + sj ≥ ni + nj,

so we have r ≥ n or s ≥ n. Thus cwn ∈ (Xn, Y n).

An interesting fact is that it follows that there is an ideal I of R with I+(X, Y ) =

{a ∈ R|aZ ∈ (X, Y )} such that every element a of I has the property that there is
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a c with can ∈ (Xn, Y n) while certain elements of (X, Y ) itself, such as X + Y , do

not have this property.

While this theorem only applies to Segre products, we note that if R is a graded

domain which is the coordinate ring of a smooth projective variety (of characteristic

zero), then the related fact that the local cohomology has no elements of negative

degree follows from the Kodaira Vanishing Theorem.

3. A Variant on almost regular sequences

In this section we consider another version of almost regular sequences for rings

of mixed characteristic.

Let R = Ẑp[[X2, . . . , Xd]], a regular local ring of mixed characteristic p of dimen-

sion d, and let S be a ring between R and R+. We will assume that d is at least 3

throughout this section.

We first introduce a function similar to a valuation but not satisfying the con-

dition that v(a) = ∞ only if a = 0. Let v0 be the m-adic valuation defined by the

maximal ideal of R/pR, extended to a function on R by defining it to be infinity on

pR. Let p be an extension of pR to R+; that is, p is a minimal prime ideal over pR

and p ∩ R = pR. Then the valuation v0 on R/pR extends to a valuation on R+/p.

We then let v be this function, extended to R+ by setting it equal to infinity on p.

The next proposition shows that, if we choose the correct convention in defining

0 · ∞, this function has the properties of a valuation except for the property of

taking the value ∞ only at 0.

Proposition 1. With the prime ideal p and the function v as above, and making

the convention that ∞ · 0 = ∞, we have

(1) v(ab) = v(a)v(b) for all a, b ∈ R+, and

(2) v(a + b) ≥ inf{v(a), v(b)} for all a, b ∈ R+.



ALMOST REGULAR SEQUENCES AND THE MONOMIAL CONJECTURE 9

Proof If a and b are not in p, then these properties follow from the fact that v

defines a valuation on R+/p. If a ∈ p and b 6∈ p, then we have

v(ab) = ∞ = ∞ · v(b) = v(a)v(b)

and

v(a + b) = v(b) = inf{∞, v(b)} = inf{v(a), v(b)}.

If both a and b are in p, both sides of both equations are infinite.

We will use the expression “there exists a small element c” to mean “for every

ǫ > 0, there is an element c with v(c) < ǫ”, where v is defined as above. With

this terminology, we say that a module M is almost zero if every element of M is

annihilated by a small element.

We prove two theorems.

Theorem 3. Let S be a ring between R and R+ as above. Suppose the following

two conditions hold for every system of parameters of the form p, x2, . . . , xd of the

ring S:

(1) For each i = 2, . . . d and any rational number α > 0, if axi is in the ideal

(pα, x2, . . . , xi−1), then there exists a small element c in R+ and a rational

number α′ > 0 such that ca ∈ (pα′

, x2, . . . , xi−1).

(2) If ap ∈ (x2, . . . , xd), then there exists a small element c such that we have

ca ∈ (x2, . . . , xd).

Then the Monomial Conjecture holds for S.

Theorem 4. The first condition of Theorem 3 always holds.

We begin by proving Theorem 3.

We first recall that in mixed characteristic it suffices to prove the Monomial

Conjecture for systems of parameters of the form p, x2, . . . xd (see Hochster [7],

Section 6).
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We next show that the condition (2) implies the corresponding condition for

powers of p in place of p. Suppose that condition (2) holds, and suppose we have

apm ∈ (x2, . . . , xd)

for some positive integer m. Let ǫ > 0. By condition (2), since (apm−1)p ∈

(x2, . . . , xd), we can find a c1 with v(c1) < ǫ/m and c1apm−1 ∈ (x2, . . . , xd). We

can then find c2 with v(c2) < ǫ/m and c2c1apm−2 ∈ (x2, . . . , xd). Continuing, we

find c1, . . . , cm with v(ci) < ǫ/m and cm · · · c1a ∈ (x2, . . . , xd). letting c = cm · · · c1,

we then have v(c) < ǫ and ca ∈ (x2, . . . , xd).

We now prove that conditions (1) and (2) imply the Monomial Conjecture. Sup-

pose we have a counterexample to the Monomial Conjecture with ring S and system

of parameters p, x2, . . . , xd. This means that for some t we have

ptxt
2 · · ·x

t
d ∈ (pt+1, xt+1

2 , . . . , xt+1
d ).

Write this in the form

ptxt
2 · · ·x

t
d = a1p

t+1 + a2x
t+1
2 + · · · + adx

t+1
d .

Moving a1p
t+1 to the other side and factoring out pt, we get

pt(xt
2 · · ·x

t
d − a1p) ∈ (xt+1

2 , . . . , xt+1
d ).

By the condition (2) extended to powers as above and applied to the system of

parameters p, xt+1
2 , . . . , xt+1

d , there exists a small element c such that

cxt
2 · · ·x

t
d ∈ (p, xt+1

2 , . . . , xt+1
d ).

We carry out one more step in detail. Write

cxt
2 · · ·x

t
d = b1p + b2x

t+1
2 + · · · + bdx

t+1
d ).

Moving b2x
t+1
2 to the left hand side of the equation and factoring out xt

2, we obtain

xt
2(cx

t
3 · · ·x

t
d − b2x2) = b1p + b3x

t+1
3 + · · · + bdx

t+1
d .
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We now apply condition (1) to the system of parameters p, xt+1
2 , . . . , xt+1

d to con-

clude that there is a rational number α2 > 0 and a small element c2 with

c2(cx
t
3 · · ·x

t
d − b2x2) ∈ (pα2 , xt+1

3 , . . . , xt+1
d ),

and from this we have that

c2cx
t
3 · · ·x

t
d ∈ (pα2 , x2, x

t+1
3 , . . . , xt+1

d ).

Repeating this step for x3, . . . , xd, we finally show that there are small elements

c, c2, c3, . . . , cd and an αd > 0 with

cc2c3 · · · cd ∈ (pαd , x2, . . . , xd).

Thus we can write

cc2c3 · · · cd = e1p
αd + e2x2 + · · · + edxd.

However, we can make v(cc2c3 · · · cd) arbitrarily small, while by Proposition 1

we have

v(cc2c3 · · · cd) = v(e1p
αd + e2x2 + · · · + edxd) ≥

inf{v(pαd), v(x2), . . . , v(xd)} = inf{v(x2), . . . , v(xd)} > 0.

This contradiction proves the theorem.

We now prove the second theorem. We begin by proving a lemma.

Lemma 1. Let b be an element of R+ such that bp divides p. Then the Frobenius

map induces an isomorphism

R+/bR+ → R+/bpR+.

Since bp divides p, it is clear that R+/bpR+ has characteristic p, so the Frobenius

map defines a ring homomorphism f from R+/bpR+ to itself. We have that f(b) =

bp = 0, so f induces a map, which we also denote f , from R+/bR+ to R+/bpR+.

Furthermore, since R+ is closed under taking pth roots, f is surjective.
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To prove that f is injective, let r ∈ R+, let s be the image of r in R+/bR+, and

assume that f(s) = 0 in R+/bpR+. This means that rp = abp for some a ∈ R+.

Let c be a pth root of a. Then (bc)p = bpcp = bpa = rp. Hence r = ζbc where ζ is a

pth root of 1. Thus r ∈ bR+, so f is injective.

We now begin the proof of Theorem 4.

Let p, x2, . . . , xd be a system of parameters for R+, and assume that we have

axi ∈ (pα, x2, . . . , xi−1)

for some α > 0 and i between 2 and d. We may assume that α ≤ 1. Since this

relation involves a finite number of elements of R+, it will hold in some subring S

which is finite over R; we can also assume that S is integrally closed. As a result,

the ideal I of Theorem 1 in S will have height 2, so there is an element c in I which

is not in any prime ideal minimal over pαS. The element c will have the property

that for any system of parameters y1, . . . , yd of S, if

byi ∈ (y1, . . . , yi−1)S

for some b ∈ S and i between 1 and d, then

cb ∈ (y1, . . . , yi−1)S.

We now consider the above equation in S/pαS; we denote the image of an element

s in S/pαS by s. We have

axi ∈ (x2, . . . , xi−1).

Since S/pαS has characteristic p, we can apply the Frobenius map and obtain

apn

xpn

i ∈ (xpn

2 , . . . , xpn

i−1)

for all positive integers n. In terms of S, this translates to

apn

xpn

i ∈ (pα, xpn

2 , . . . , xpn

i−1).
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Since pα, xpn

2 , . . . , xpn

d is a system of parameters for S, this implies that

capn

∈ (pα, xpn

2 , . . . , xpn

i−1),

so that we can write

capn

= a1p
α + a2x

pn

2 + · · · + ai−1x
pn

i−1 (∗)

for some elements a1, . . . , ai−1 in S.

We note that since c is in no prime ideal minimal over pαS, c is in particular not

in p ∩ S, where p is the prime ideal in the definition of v. Thus v(c) < ∞.

We now apply Lemma 1. It implies that the nth power of the Frobenius map

induces an isomorphism f : R+/pα/pn

R+ → R+/pαR+. Lifting the elements

c, a2, . . . , ai−1 in equation (*) to elements d, b2, . . . , bi−1, we have that there ex-

ists an element b1 ∈ R+ with

da = b1p
α/pn

+ b2x2 + · · · + bi−1xi−1.

Since dpn

− c ∈ pαR+, we have v(dpn

) = v(c), so v(d) = v(c)/pn. Letting n go

to infinity, we obtain elements with v(d) arbitrarily small with

da ∈ (pα′

, x2, . . . , xd),

where α′ = α/pn.
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