
SOME SOLUTIONS TO HOMEWORK #1

MATH 435 – SPRING 2012

Certainly there are many correct ways to do each problem.
#2 from page 50. Suppose G is a finite set with a associative binary operation satisfying the
rule ab = ac implies that b = c and also that ba = ca implies that b = c. We want to prove that
G is a group. Closure and associativity were both given and so first we prove the identity (note
we cannot even hope to show that inverses exist until after we show that there is an identity).
Consider first the set {a1, a2, . . . , an, . . . } ⊆ G. Since G is finite, an = am for some m > n ≥ 1.
Set e = am−n, we need to prove that e is the identity which will show that G in fact possesses
an identity. So fix b ∈ G and write eb = c ∈ G where of course we want to prove that c = b.
Multiplying both sides by an we obtain:

anc = aneb = anam−nb = amb = anb.

Using cancelation implies that c = b as desired. Likewise if be = d, then multiplying both sides
on the right by am−n, simplifying and canceling as before proves again that b = d which proves
that e is in fact the identity.

Now, we need to show that inverses exist. Fix a ∈ G and choose m > n as before such that
an = am, we can certainly also assume that m − n > 1. Thus by cancelation a1 = am−n+1

and so ea = am−n+1. Cancelation again implies that e = aam−n−1 = am−n−1a and so since
m− n− 1 > 0, we see that am−n−1 makes sense and is an inverse to a.

#5 from page 50. Suppose G is a group for which (ab)3 = a3b3 and (ab)5 = a5b5 for all
a, b ∈ G. We want to prove that G is Abelian.

Proof. Fix a, b ∈ G. Then (ab)(ab)(ab)(ab)(ab) = (ab)5 = a5b5 and cancelation of the end-
terms, or multiplication by inverses, implies that (ba)4 = b(ab)(ab)(ab)a = a4b4. Likewise,
(ab)(ab)(ab) = (ab)3 = a3b3 which implies that

(1) (ba)2 = a2b2

again by cancelation. But (ba)4 = (ba)2(ba)2 = a2b2a2b2 so that a4b4 = a2b2a2b2. Cancelation
again implies a2b2 = b2a2 which is certainly getting us closer. Now, using Equation 1, but
switching the roles of a and b, we have (ab)2 = b2a2, so that a2b2 = b2a2 = (ab)2 = (ab)(ab).
Cancelation of the end-terms one last time yields ab = ba which proves that G is Abelian. �

#8 from page 55. In this problem, G is an Abelian group and H = {a ∈ G|a2 = e}
and we want to show that H is a subgroup. Certainly e ∈ H, since e2 = e. Now we prove
closure, suppose that a, b ∈ H, then to show ab ∈ H we need to show that (ab)2 = e. But
(ab)2 = (ab)(ab) = a2b2 = ee = e (using the fact that G is Abelian). Finally, we have a ∈ H
and we need to prove a−1 ∈ H. But if a ∈ H, then a2 = aa = e so that a−1 = a, thus a−1 ∈ H
as well. Thus H is a subgroup as desired.

#18 from page 55. In this problem, A(S) is the set of bijection functions from S back to S
with group operation composition. Consider T (X) as defined. Certainly if f, g ∈ T (X), then to
show f ◦ g ∈ T (X), we consider (f ◦ g)(X) = f(g(X)) ⊆ f(X) ⊆ X by hypothesis. This proves
that T (X) is closed under composition. It is easy to see that the identity function is in T (X)
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since id(X) = X by definition. Finally, we need to prove that if f ∈ T (X), that f−1 ∈ T (X)
also. To do that, we need to show that f−1(X) ⊆ X. Now, consider f |X (f restricted to X).
This is a function from X to X which is injective, since f is injective. It is therefore surjective
onto X since X is finite. Thus for every element x ∈ X, the element y ∈ S such that f(y) = x
actually satisfies y ∈ X. In other words, we have just shown that f−1(X) ⊆ X as desired.

#22 from page 55. This is very easy with Lagrange’s theorem. Set k = |AB|. Note k is at
most mn (since AB = {ab|a ∈ A, b ∈ B}). On the other hand AB is itself a group by #19 and
A and B are clearly subgroups of AB (since e ∈ B and e ∈ A respectively). Therefore m|k and
n|k, this clearly implies that mn|k since m and n are coprime. Thus mn|k and k ≤ mn, which
certainly implies that k = mn as desired.

#26 from page 56. This follows from the material in the text on equivalence relations and
Lagrange’s theorem. Note that Ha is the equivalence class of a under the relation we (and the
book) discusses in the next chapter.

#29 from page 56. We assume that y−1My ⊆ M for ALL y ∈ G and we want to prove
equality for all y ∈ G. Thus fix x ∈ G. We know x−1Mx ⊆ M and we need to prove ⊇. So
fix m ∈ M and consider m′ = xmx−1. If we set y = x−1 then m′ = y−1my ∈ y−1My ⊆ M
because that containment holds for any y, and so m′ ∈M . But then x−1Mx contains x−1m′x =
x−1xmx−1x = eme = m which proves the other containment and completes the proof.


