
SOME SOLUTIONS TO HOMEWORK #2

MATH 435 – SPRING 2012

Certainly there are many correct ways to do each problem.
#4 on page 54. Verify that Z(G), the center of G, is a subgroup of G.

Proof. First note that ea = a = ae for all a ∈ G which proves that e ∈ Z(G). Now suppose that
f, g ∈ Z(G). Then for any a ∈ G, observe that

(fg)a = f(ga) = f(ag) = (fa)g = (af)g = a(fg)

which proves that fg ∈ Z(G) and so Z(G) is closed under multiplication. Finally, suppose that
f ∈ Z(G). Then for any a ∈ G,

f−1a = (a−1f)−1 = (fa−1)−1 = af−1

which proves that f ∈ Z(G) as desired. �

#5 on page 55. If C(a) is the Centralizer of a in G, prove that Z(G) =
⋂

a∈GC(a) .

Proof. Let me give two proofs. The first is just words. Z(G) is the set of elements that commute
with everything in G. C(a) is the set of elements that commute with each a. Thus

⋂
a∈GC(a)

is the set of elements that commute with each a ∈ G. But that’s exactly Z(G).
Here is the second proof. Suppose that x ∈ Z(G). Thus xa = ax for each a ∈ G and so

x ∈ C(a) for each a ∈ G. Thus x ∈
⋂

a∈G proving that Z(G) ⊆
⋂

a∈GC(a). Conversely, suppose
that x ∈

⋂
a∈GC(a). Fix a ∈ G, then since x ∈ C(a), xa = ax. But this holds for all a proving

that x ∈ Z(G). This proves that
⋂

a∈GC(a) ⊆ Z(G). Combined, these two containments imply
that

⋂
a∈GC(a) = Z(G). �

#13 on page 55. If G is cyclic, prove that every subgroup of G is cyclic.

Proof. Suppose that H ⊆ G is a subgroup. If H = {e} then we are done so we may suppose
that H has non-identity elements. Now suppose that G = 〈a〉. Consider the set of integers:

S = {i > 0|ai ∈ H}
Now H contains an element ai 6= e since H 6= {e}. If i < 0, then (ai)−1 = a−i ∈ H and so
−i ∈ S. If i > 0, then i ∈ S. Either way, S is non-empty.

Set m = min(S). We will show that H = 〈am〉, certainly the containment ⊇ is obvious. For
the other containment, choose b ∈ H ⊆ G, so we can write b = 〈an〉. Now write n = qm + r for
some q ∈ Z and 0 ≤ r ≤ m − 1. We will prove that r = 0. Note b(am)−q = an−mq = ar ∈ H.
Thus either r = 0, or r > 0 and so r ∈ S but the latter is impossible since r < m and m is the
smallest element of S. But now that r = 0, we have that n = qm and b = (am)q and so b ∈ 〈am〉
proving that 〈am〉 = H as desired. �

# 3 on page 63. Let ∼ be a relation on a set S that satisfies (1), a ∼ b implies b ∼ a and
(2), a ∼ b and b ∼ c implies a ∼ c. These seem to imply that a ∼ a for all a ∈ S. For if a ∼ b
then by (1), b ∼ a and so a ∼ b and b ∼ a together imply that a ∼ a. What is wrong with the
argument we have given?

Proof. It could be that a is not related/comparable to any element. In particular, we do not
know that there exists any b such that a ∼ b. �
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#9 on page 64. In Zmod16 write down all cosets of the group H = {[0], [4], [8], [12]}. Note
its fine to write the elements of Zmod16 as the numbers {0, 1, . . . , 15} instead of as equivalence
classes.

Proof. I’ll just write the answer.

0 + H = 4 + H = 8 + H = 12 + H = {[0], [4], [8], [12]}
1 + H = 5 + H = 9 + H = 13 + H = {[1], [5], [9], [13]}
2 + H = 6 + H = 10 + H = 14 + H = {[2], [6], [10], [14]}
3 + H = 7 + H = 11 + H = 15 + H = {[3], [7], [11], [15]}

�

#15 on page 64. If p is a prime, show that the only solutions to x2 ≡modp 1 are x ≡modp 1
and x ≡modp p− 1 ≡modp −1.

Proof. Suppose that x is one of 0, . . . , p− 1 and that x2 ≡modp= 1. Thus x2 = qp + 1 for some
q ∈ Z. Thus (x2 − 1) = qp so (x− 1)(x+ 1) = qp. This implies that p divides x− 1 or p divides
x + 1. If p divides x− 1 and x is between 0 and p− 1, we must therefore have x− 1 = 0 and so
x = 1. On the other hand, if p divides x + 1 then again because x is between 0 and p − 1, we
must have x + 1 = p and so x = p− 1. So either x = 1 or x = p− 1 as desired. �

#26 on page 65. Let G be a group, H a subgroup of G, and let S be the set of all distinct
right costs of H in G, T the set of all left cosets of H in G. Prove that there is a 1-1 mapping
of S onto T .

Proof. If G is finite, the number of left or right cosets is just |G|/|H| by the proof of Lagrange’s
theorem. However, we need to do the general case. Let me tell you what the map is and I’ll let
you fill in the details.

Send the coset Ha to a−1H.
You have to show that this is well defined, injective and surjective (proving it is surjective is

trivial – why?) �

(3) – not from the book. Show that every Abelian group of order 6 is cyclic.

Proof. Suppose first that G is an Abelian group of order 6 and suppose it is not cyclic.
We will first show that G contains an element of order 2. Indeed, suppose not to this other

question as well. This means that every non-identity element of G must be order 3 by Lagrange’s
theorem. In particular, fix a ∈ G to be an element of order 3, then a2 6= e and a3 = e. There
are three elements of G not in 〈a〉 = {e, a, a2}. Fix b ∈ G where b /∈ 〈a〉. Thus b2 = b−1 /∈ 〈a〉
either because 〈a〉 is itself a (sub)group. Thus there is exactly 1 element c ∈ G where c /∈ 〈a〉
and c /∈ 〈b〉. But then c2 = c−1 6= e (because c has order 3) and c2 /∈ 〈a〉 ∪ 〈b〉. Finally, c2 6= c
since c 6= e. But this is impossible as then we have 7 distinct elements of G, e, a, a2, b, b2, c, c2.

We now show that G contains an element of order 3. Indeed suppose not. Thus every non-
identity element of G must be order 2. (We could argue as above, but we give a different
argument). Suppose that a, b ∈ G are distinct elements of order 2. Then consider the set
H = {e, a, b, ab}. It is easy to see that this set is closed under multiplication (for example,
b(ab) = ab2 = ae = a and (ab)a = a2b = b). It follows that this set is a subgroup of G since
it is finite, also note that ab 6= a and ab 6= b because in the first case, then b = e and in the
second case a = e (but a and b are order 2). So H is a subgroup of G of order 4. Therefore by
Lagrange’s theorem, 4 divides the order of G, which is 6, which is a contradiction.

Ok, we’ve now proven that G contains an element f of order 2 and an element g of order
3. Consider now order of fg, note that fg 6= e since f and g already have inverses, f and g2
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respectively, thus the order of fg is bigger than 1. Using that G is Abelian we have:

(fg)2 = (fg)(fg) = f2g2 = eg2 = g2 6= e
(fg)3 = (fg)(fg)(fg) = ff2g3 = fee = f 6= e

Thus the order of fg divides 6 by Lagrange’s theorem, and is not 1, 2 or 3. In other words, the
order of fg is 6 which proves that |〈fg〉| = 6 and so 〈fg〉 = G. This last statement proves that
G is cyclic as desired. �


