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ABSTRACT. For K an infinite field of characteristic other than two, consider the action of
the special orthogonal group SOt(K) on a polynomial ring via copies of the regular repre-
sentation. When K has characteristic zero, Boutot’s theorem implies that the invariant ring
has rational singularities; when K has positive characteristic, the invariant ring is F-regular,
as proven by Hashimoto using good filtrations. We give a new proof of this, viewing the
invariant ring for SOt(K) as a cyclic cover of the invariant ring for the corresponding or-
thogonal group; this point of view has a number of useful consequences, for example it
readily yields the a-invariant and information on the Hilbert series. Indeed, we use this to
show that the h-vector of the invariant ring for SOt(K) need not be unimodal.

1. INTRODUCTION

Let X be an n× n symmetric matrix of indeterminates over a field K, and let It+1(X)
denote the ideal of the polynomial ring K[X ] generated by the size t +1 minors of X . For t
a positive integer with t + 1 ⩽ n, we refer to K[X ]/It+1(X) as a symmetric determinantal
ring. The ring K[X ]/It+1(X) is a Cohen-Macaulay normal domain of dimension(

n+1
2

)
−
(

n+1− t
2

)
,

as proven in [Ku]. These rings have been studied extensively, in part because they arise as
invariant rings for the natural action of the orthogonal group

(1.0.1) Ot(K) := {M ∈ GLt(K) | MtrM = id}
as follows: for Y a t ×n matrix of indeterminates, Ot(K) acts K-linearly on K[Y ] via

M : Y 7−→ MY for M ∈ Ot(K).

This is a right action of Ot(K) on the polynomial ring K[Y ], corresponding to a left ac-
tion of Ot(K) on affine space At×n

K . Note that Y trY 7−→ Y trMtrMY = Y trY for M ∈ Ot(K),
so the entries of Y trY are invariant under the action; when the field K is infinite of char-
acteristic other than two, the invariant ring is precisely the K-algebra generated by the
entries of Y trY , see [DP, Theorem 5.6], and is isomorphic to the symmetric determinan-
tal ring K[X ]/It+1(X) via the entrywise map X 7−→ Y trY . We use this to identify the
rings K[X ]/It+1(X) and K[Y trY ].
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By [Go1, Go2], the ring R := K[Y trY ] has class group Z/2, and is Gorenstein precisely
when n ≡ t + 1 mod 2. Taking p to be a prime ideal that serves as a generator for the
class group, it follows that the symbolic power p(2) is isomorphic to R. We choose an
explicit isomorphism p(2) ∼= R so that the cyclic cover of R with respect to p is then pre-
cisely the invariant ring for the action of the special orthogonal group SOt(K). This gives
a straightforward approach towards studying the invariant ring K[Y ]SOt (K), for example
towards determining its a-invariant and information regarding the Hilbert series.

When K is an infinite field of characteristic two, the groups Ot(K) and SOt(K) coincide
when taking Ot(K) to be the group as defined in (1.0.1); the invariant ring in this case is

K[Y trY,
t

∑
i=1

yi j | 1 ⩽ j ⩽ n],

see [Ri, Proposition 17], and a presentation is provided by [Ri, Proposition 23]. The reader
is warned that there are varying definitions used for the orthogonal group in characteristic
two, see for example [PS, page 10].

Section 2 includes some generalities on cyclic covers; these are used in Section 3 where
we compute the a-invariant of K[Y ]SOt (K) and also record a proof that this ring is F-regular.
Section 4 is devoted to the h-vector of K[Y ]SOt (K), i.e., the coefficients of the numerator of
its Hilbert series: the key result here is that this invariant ring is a semistandard graded
Gorenstein normal domain, for which the h-vector need not be unimodal; the context for
this is discussed as well in Section 4.

2. CYCLIC COVERS AND F -REGULARITY

Let R be a normal domain. By a divisorial ideal of R, we mean a nonzero intersection
of fractional principal ideals. Let a be a divisorial ideal that has finite order m when viewed
as an element of the divisor class group of R. Then a(m) = αR, for an element α in the
fraction field of R. Set

(2.0.1) T := 1/α
1/m,

which is an element in an algebraic closure of the fraction field of R; the choice of α or
the m-th root is not unique. The cyclic cover of R with respect to a is the ring

R̃ := R[aT, a(2)T 2, a(3)T 3, . . . ],

viewed as a subring of R[T ]. Since

a(m+k)T m+k = αa(k)T m+k = a(k)T k

for each k ⩾ 0, the ring R̃ is a finitely generated reflexive R-module; specifically, one has
an R-module isomorphism

R̃ ∼= R⊕a⊕a(2)⊕·· ·⊕a(m−1).

When the ring R is N-graded and a is a homogeneous divisorial ideal of finite order m,
there exists a homogeneous element α with a(m) = αR, and the N-grading on R extends to
a Q-grading on R̃ obtained by setting

degT :=−(degα)/m.

It turns out that this is a Q⩾0-grading on R̃, and that [R̃]0 = R0, see [Si, Proposition 4.2].
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Suppose that the characteristic of R is zero or relatively prime to m, and that p is a
height one prime ideal of R. Then the ideal aRp is principal; take r to be a generator.
Since rm = αu, for u a unit in Rp, it follows that

R̃p = Rp[rT ] ∼= Rp[u1/m],

so Rp −→ R̃p is étale. In particular, under this assumption on the characteristic, the ring R̃p

is regular for each height one prime of R; since each a(k) is reflexive, the ring R̃ also satisfies
the Serre condition S2, and is hence a normal domain. By [Wa, Theorem 2.7], F-regularity
is preserved under finite extensions that are étale at height one primes, so one has:

Theorem 2.1 (Watanabe). Let R be an N-graded ring that is finitely generated over a
field R0 of characteristic p > 0, and let R̃ be the cyclic cover of R with respect to a homo-
geneous ideal of finite order relatively prime to p. Then, if R is F-regular, so is R̃.

The restriction on the characteristic is removed in [CR, Theorem C]. For the theory of F-
regularity in the graded setting, we point the reader towards [HH]. When R is an N-graded
ring finitely generated over a field R0 of positive characteristic, the notions of weak F-
regularity, F-regularity, and strong F-regularity all coincide as proven in [LS], so we do
not make a distinction between these in the present paper.

The F-regularity of generic determinantal rings and of Plücker coordinate rings of
Grassmannians is proven as [HH, Theorem 7.14]; the proof therein is readily adapted to
symmetric determinantal rings, as we show next. For a different approach, see [Lő, §4.1].

Theorem 2.2. Let X be an n× n symmetric matrix of indeterminates over a field K of
positive prime characteristic. Then the ring K[X ]/It+1(X) is F-regular.

Proof. If n ≡ t + 1 mod 2, then K[X ]/It+1(X) is Gorenstein; otherwise, enlarge X to a
symmetric matrix X̃ of size n+1, in which case the ring K[X̃ ]/It+1(X̃) is Gorenstein, and
contains K[X ]/It+1(X) as a pure subring. Since F-regularity is inherited by pure subrings,
it suffices to prove the desired result when R := K[X ]/It+1(X) is Gorenstein.

The a-invariant of R is computed in [Ba] and [Co2], and recorded in the following
section; in particular, a(R) < 0. We next claim that R is F-injective, equivalently F-pure,
since the notions coincide in the Gorenstein case. This follows by [CH2, Theorem 2.1]
in combination with the main result of [Co1] asserting that the “diagonal” initial ideal
of It+1(X) is square-free and defines a Cohen-Macaulay ring.

The F-regularity of R now follows from [HH, Corollary 7.13], once we verify that the
localization Rxi j is F-regular for each xi j. Using the lemma below and induction on t,
the localizations Rx11 and R∆ are F-regular; but then Rp is F-regular if p is a prime ideal
such that x11 /∈ p or ∆ /∈ p. It follows that Rp is also F-regular if x12 /∈ p. Since we have
accounted for the diagonal variable x11 and the off-diagonal variable x12, the symmetry
implies that Rxi j is F-regular for each xi j. □

Lemma 2.3. Let R := K[X ]/It+1(X), where X is a symmetric n× n matrix of indetermi-
nates. Then:

(1) The ring Rx11 is isomorphic to a localization of a polynomial ring over K[X ′]/It(X ′),
where X ′ is a symmetric (n−1)× (n−1) matrix of indeterminates.

(2) For ∆ := x11x22 −x2
12, the ring R∆ is isomorphic to a localization of a polynomial ring

over K[X ′]/It−1(X ′), for X ′ a symmetric (n−2)× (n−2) matrix of indeterminates.

For a proof, see [Jo, Lemma 1.1]; the argument also appears implicitly in [MV].
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3. THE a-INVARIANT

Let Y be a t ×n matrix of indeterminates over a field K. In this section, we work with
the grading on the subring R := K[Y trY ] that is induced by the standard grading on the
polynomial ring K[Y ]. Note that under the identification of K[X ]/It+1(X) with K[Y trY ],
this corresponds to taking degxi j = 2 for each i, j. With this grading, [Ba, Theorem 4.4]
or [Co2, Theorem 2.4] imply that the a-invariant of R is

a(R) =

{
−t(n+1) if n ≡ t mod 2,
−tn if n ̸≡ t mod 2;

more generally, the graded canonical module of R is

ωR =

{
p(−tn+ t) if n ≡ t mod 2,
R(−tn) if n ̸≡ t mod 2,

where p is the ideal of K[Y trY ] generated by the maximal minors of the first t rows of Y trY ,
i.e., by the maximal minors of the product matrix

y11 y21 · · · yt1
y12 y22 · · · yt2
...

...
...

...
y1t y2t · · · ytt




y11 y12 y13 · · · · · · y1n
y21 y22 y23 · · · · · · y2n
...

...
...

...
...

...
yt1 yt2 yt3 · · · · · · ytn

 .

Using the identification of K[X ]/It+1(X) with K[Y trY ], the ideal p is prime of height one
by [Ku, Theorem 1], and generates the class group of R by [Go1]. The symbolic power p(2)

is the principal ideal of R generated by the determinant of the first t columns of the product
matrix displayed above, i.e., p(2) is generated by the square of

∆ := det


y11 y21 · · · yt1
y12 y22 · · · yt2
...

...
...

...
y1t y2t · · · ytt

 .

Choosing a unit as in (2.0.1), set
T := 1/∆.

The generators of pT are then identified with the maximal minors of the matrix Y , so
that the cyclic cover R̃ of R with respect to p is the subring of the polynomial ring K[Y ]
generated by the entries of the product matrix Y trY along with the maximal minors of Y . It
is clear that these generators are fixed under the action of the special orthogonal group

M : Y 7−→ MY for M ∈ SOt(K).

When the field K is infinite of characteristic other than two, the invariant ring is precisely
the K-algebra generated by these elements, [DP, Theorem 5.6].

We determine the graded canonical module of R̃; while the semisimplicity of SOt(K)

may be used to verify that R̃ is Gorenstein, [HR, page 123], our goal is to additionally
obtain the a-invariant of R̃. Since degT =−t, one has

R̃ = R⊕p(t).

Let m denote the homogeneous maximal ideal of R. For an N-graded R-module M, we
use Hom(M,R/m) to denote its graded dual as in [GW, page 184]. Setting d := dimR, the
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graded canonical module of R̃ may be computed as

ωR̃ = Hom
(
Hd
m(R̃), R/m

)
= Hom

(
Hd
m(R), R/m

)
⊕Hom

(
Hd
m(p(t)), R/m

)
.

The first term in this direct sum is ωR, while the second is

Hom
(
Hd
m(p(t)), R/m

)
= Hom

(
Hd
m(ωR)⊗R ω

(−1)
R ⊗R p(t), R/m

)
= HomR

(
ω

(−1)
R ⊗R p(t), Hom

(
Hd
m(ωR), R/m

))
= HomR

(
ω

(−1)
R ⊗R p(t), R

)
=

(
ωR ⊗R p

(−1)(−t)
)∗∗

,

where (−)∗∗ is the reflexive hull. Since p(2) = R(−2t), one has p(−1) = p(2t), so

(
ωR ⊗R p

(−1)(−t)
)∗∗

=

{
R(−tn) if n ≡ t mod 2,
p(−tn+ t) if n ̸≡ t mod 2.

Putting it all together, one gets

ωR̃ =

{
p(−tn+ t)⊕R(−tn) if n ≡ t mod 2,
R(−tn)⊕p(−tn+ t) if n ̸≡ t mod 2,

so that
ωR̃ = R̃(−tn),

i.e., R̃ is Gorenstein with a(R̃) =−tn. To summarize what we have at this stage:

Theorem 3.1. Let Y be a t × n matrix of indeterminates over a field K of characteristic
other than two. Let R̃ denote the K-subalgebra of K[Y ] generated by the entries of the
product matrix Y trY along with the maximal minors of Y . Then R̃ is a Gorenstein normal
domain. When K has characteristic zero, the ring R̃ has rational singularities; when K has
positive characteristic, R̃ is F-regular.

With the N-grading on R̃ inherited from the standard grading on K[Y ], one has

a(R̃) = −tn.

The fact that R̃ has rational singularities in characteristic zero follows from Boutot’s
theorem [Bo]; the F-regularity in characteristic p ⩾ 3 follows by combining Theorem 2.1
and Theorem 2.2. For a different approach using good filtrations, see [Ha, Corollary 2].

Remark 3.2. The ring R̃ in Theorem 3.1 has K-algebra generators in degree 2 and degree t;
it admits a standard grading in the following two cases:

(i) When t = 1, index the entries of Y as y1, . . . ,yn. The ring R := K[Y trY ] is then the
second Veronese subring of the polynomial ring K[Y ], i.e., the subring generated by the
monomials yiy j. One has

p = (y2
1,y1y2, . . . ,y1yn)R and p(2) = (y2

1)R.

Taking T := 1/y1, the cyclic cover R̃ coincides with K[Y ] under the standard grading.
(ii) When t = 2, the K-algebra generators of R̃ are the entries of Y trY , and the size two

minors of Y ; these generators all have degree two, so the grading on R̃ may be rescaled to
a standard grading.
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Remark 3.3. When t is even, the ring R̃ in Theorem 3.1 has generators of even degree;
rescaling by a factor of two, one obtains generators in degree one (the entries of Y trY ) and
generators in degree t/2 (the maximal minors of Y ); this is the grading considered in the
following section. This is a semistandard grading on R̃, i.e., an N-grading under which the
ring is integral over the K-subalgebra generated by its elements of degree one.

4. NONUNIMODAL h-VECTORS

A description for the Hilbert function of a generic determinantal ring may be found
in [Ab], while an expression for its Hilbert series is presented in [CH1]. In particular, for
the numerator of the Hilbert series, known as the h-polynomial, one has both a combina-
torial description (in terms on non-intersection paths with given number of turns) and an
explicit compact (and determinantal!) formula. For pfaffian rings, the corresponding re-
sults are in [DN, GK]. For symmetric determiantal rings one finds in [Co2] a combinatorial
description of the h-polynomial, but no compact determinantal expression for it is known
in general. However, for X a symmetric n×n matrix of indeterminates and t +1 = n−1,
the expression of the h-polynomial of K[X ]/It+1(X) is easily obtained to be

(4.0.1)
(

2
2

)
+

(
3
2

)
z+ · · ·+

(
n
2

)
zn−2,

see for example [Co2, Example 2.3(c)].
As in Remark 3.3, an N-grading on a ring A is semistandard if A is a finitely generated

algebra over a field K := A0, and A is integral over the K-subalgebra generated by its
elements of degree one. This condition ensures that the Hilbert series of A may be written
as a rational function

h0 +h1z+h2z2 + · · ·+hkzk

(1− z)dimA , where hi ∈ Z and hk ̸= 0.

The coefficients of the numerator, i.e., of the h-polynomial, form the h-vector (h0, . . . ,hk)
of the ring A. When A is Cohen-Macaulay, it is readily seen that each hi is nonnegative;
when A is Gorenstein, the h-vector is a palindrome, i.e., hi = hk−i for each 0 ⩽ i ⩽ k. In
this case, the h-vector is said to be unimodal if

h0 ⩽ h1 ⩽ . . .⩽ h⌊k/2⌋.

Unimodality results reflect interesting geometric and combinatorial properties; they figure
prominently in Ehrhart theory. Following his proof of the Anand-Dumir-Gupta conjectures
regarding the enumeration of magic squares [St1, St3], Stanley asked if the h-vector of the
corresponding affine semigroup ring is unimodal. This was indeed proven to be the case by
Athanasiadis [At], see also [BR]. While Mustaţă and Payne [MP] have constructed exam-
ples of Gorenstein normal affine semigroup rings for which the h-vector is not unimodal,
these are not standard graded, and the following remains unresolved:

Conjecture 4.1. The h-vector of a standard graded Gorenstein domain is unimodal.

This is due to Stanley [St2, Conjecture 4(a)], see also [Bra, Conjecture 1], [Bre, Con-
jecture 5.1], [Bru, page 36], and [Hi, Conjecture 1.5]. We show that invariant rings for the
action of SOt(K) yield examples of “naturally occurring” semistandard graded Gorenstein
normal domains, for which the h-vector is not unimodal:

Theorem 4.2. Consider a 2m× (2m+ 2) matrix of indeterminates Y over a field K of
characteristic other than two. Let R̃ denote the K-subalgebra of K[Y ] generated by the
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entries of the product matrix Y trY and the maximal minors of Y , where the generators are
assigned degree 1 and degree m respectively. If m ⩾ 2, the h-vector of R̃ is not unimodal.

Proof. Viewing the subring R := K[Y trY ] as a symmetric determinantal ring and using the
expression (4.0.1), one see that R has Hilbert series(2

2

)
+
(3

2

)
z+ · · ·+

(2m+2
2

)
z2m

(1− z)2m2+5m
.

The ring R is not Gorenstein; the Hilbert series of R yields that of ωR, from which it follows
that the cyclic cover R̃ has Hilbert series[(2

2

)
+
(3

2

)
z+ · · ·+

(2m+2
2

)
z2m

]
+
[(2m+2

2

)
zm +

(2m+1
2

)
zm+1 + · · ·+

(2
2

)
z3m

]
(1− z)2m2+5m

.

Hence

hm −hm+1 =

[(
m+2

2

)
+

(
2m+2

2

)]
−
[(

m+3
2

)
+

(
2m+1

2

)]
= m−1,

so the h-vector of R̃ is not unimodal; for a specific example, the case m = 2 yields the
nonunimodal h-vector

(1, 3, 6, 10, 15, 0, 0)+(0, 0, 15, 10, 6, 3, 1) = (1, 3, 21, 20, 21, 3, 1). □
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Birkhäuser, Boston, MA, 1996. 6

[Wa] K.-i. Watanabe, F-regular and F-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), 341–350. 3
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