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Divisor class groups of graded hypersurfaces

Anurag K. Singh and Sandra Spiroff

Abstract. We demonstrate how some classical computations of divisor class
groups can be obtained using the theory of rational coefficient Weil divisors

and related results of Watanabe.

1. Introduction

The purpose of this note is to provide a simple technique to compute divisor
class groups of affine normal hypersurfaces of the form

k[z, x1, . . . , xd]/(zn − g) ,

where g is a weighted homogeneous polynomial in x1, . . . , xd of degree relatively
prime to n. We use the theory of rational coefficient Weil divisors due to Demazure
[3] and related results of Watanabe [14]. This provides an alternative approach
to various classical examples found in Samuel’s influential lecture notes [10], as
well as to computations due to Lang [6] and Scheja and Storch [11]. While the
computations we present here are subsumed by those of [11], our techniques are
different. A key point in our approach is that the projective variety defined by
a hypersurface as above is weighted projective space over k, and this makes for
straightforward, elementary calculations.

Watanabe [14, page 206] pointed out that Q-divisor techniques can be used to
recover the classification of graded factorial domains of dimension two, originally
due to Mori [8]. Robbiano has applied similar methods to a study of factorial and
almost factorial schemes in weighted projective space [9].

2. Q-divisors

We review some material from [3] and [14]. Let k be a field, and let X be a
normal irreducible projective variety over k, with rational function field k(X).

A rational coefficient Weil divisor or a Q-divisor onX is a Q-linear combination
of irreducible subvarieties of X of codimension one. Let D =

∑
niVi be a Q-divisor,

where Vi are distinct. Then bDc is defined as

bDc =
∑
bnicVi ,
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where bnc denotes the greatest integer less than or equal to n. We set

OX(D) = OX(bDc) .

If each coefficient ni occurring in D is nonnegative, we say that D > 0.
A Q-divisor D is ample if nD is an ample Cartier divisor for some n ∈ N. In

this case, the generalized section ring corresponding to D is the ring

R(X,D) = ⊕j>0H
0(X,OX(jD)) .

If R = R(X,D), then the n-th Veronese subring of R = R(X,D) is the ring

R(n) = ⊕j>0H
0(X,OX(jnD)) = R(X,nD) .

The following theorem, due to Demazure, implies that a normal N-graded ring R
is determined by a Q-divisor on ProjR.

Theorem 2.1. [3, 3.5]. Let R be an N-graded normal domain, finitely generated
over a field R0. Let T be a homogeneous element of degree 1 in the fraction field of
R. Then there exists a unique ample Q-divisor D on X = ProjR such that

R = ⊕j>0H
0(X,OX(jD))T j .

We next recall a result of Watanabe, which expresses the divisor class group of
R in terms of the divisor class group of X and a Q-divisor corresponding to R.

Theorem 2.2. [14, Theorem 1.6] Let X be a normal irreducible projective
variety over a field. Assume dimX > 1 and let D =

∑r
i=1(pi/qi)Vi be a Q-divisor

on X where Vi are distinct irreducible subvarieties, pi, qi ∈ Z are relatively prime,
and qi > 0. Set

R = ⊕j>0H
0(X,OX(jD))T j .

Then there is an exact sequence

0 −−−−→ Z θ−−−−→ Cl(X) −−−−→ Cl(R) −−−−→ cokerα −−−−→ 0 ,

where θ(1) = lcm(qi) ·D, and α : Z −→ ⊕ri=1Z/qiZ is the map 1 7→ (pi mod qi)i.

In the exact sequence above, cokerα is always a finite group. Moreover, if X
is projective space, a Grassmannian variety, or a smooth complete intersection in
Pn of dimension at least three, then Cl(X) = Z. It follows that, in these cases, the
divisor class group of R(X,D) is finite for any ample Q-divisor D on X, and hence
that R(X,D) is almost factorial in the sense of Storch [12].

Lipman proved that the divisor class group of a two-dimensional normal local
ring R with rational singularities is finite, [7, Theorem 17.4]. While this is a hard
result, the analogous statement for graded rings is a straightforward application of
Theorem 2.2. Indeed, let R be an N-graded normal ring of dimension two, finitely
generated over an algebraically closed field R0, such that R has rational singular-
ities. Then R has a negative a-invariant by [14, Theorem 3.3], so H1(X,OX) = 0
where X = ProjR. But then X is a curve of genus 0 so it must be P1, and it follows
that the divisor class group of R is finite.

Remark 2.3. We note some aspects of Watanabe’s proof of Theorem 2.2. Let
Div(X) be the group of Weil divisors on X, and let

Div(X,Q) = Div(X)⊗Z Q
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be the group of Q-divisors. For D as in Theorem 2.2, set Div(X,D) to be the
subgroup of Div(X,Q) generated by Div(X) and the divisors

1
q1
V1, . . . ,

1
qr
Vr .

Each element E ∈ Div(X,D) gives a divisorial ideal

⊕j>0H
0(X,OX(E + jD))T j

of R, and hence an element of Cl(R). The map Div(X,D) −→ Cl(R) induces a
surjective homomorphism

Div(X,D)/Div(X) −→ Cl(R)/ image(Cl(X)) .

3. Computing divisor class groups

The divisor class groups of affine surfaces of characteristic p defined by equa-
tions of the form zp

n

= g(x, y) have been studied in considerable detail; such
surfaces are sometimes called Zariski surfaces. In [6] Lang computed the divisor
class group of hypersurfaces of the form zp

n

= g(x1, . . . , xd) where g is a homoge-
neous polynomial of degree relatively prime to p. The proposition below recovers
[6, Proposition 3.11].

Let A = k[x1, . . . , xd] be a polynomial ring over a field. We say g ∈ A is a
weighted homogeneous polynomial if there exists an N-grading on A, with A0 = k,
for which g is a homogeneous element.

Proposition 3.1. Let R = k[z, x1, . . . , xd]/(zn − g) be a normal hypersur-
face over a field k, where g ∈ k[x1, . . . , xd] is a weighted homogeneous polynomial
with degree relatively prime to n. Let g = h1 · · ·hr, where hi ∈ k[x1, . . . , xd] are
irreducible polynomials. Then

Cl(R) = (Z/nZ)r−1 ,

and the images of (z, h1), . . . , (z, hr−1) form a minimal generating set for Cl(R).

Note that if n > 2, then the hypothesis that R is normal forces h1, . . . , hr to
be pairwise coprime irreducible polynomials.

Proof of Proposition 3.1. The polynomial ring k[x1, . . . , xd] has a grading
under which deg xi = ci for ci ∈ N, and the degree of g is an integer m relatively
prime to n. We assume, without any loss of generality, that gcd(c1, . . . , cd) = 1.
Consider the N-grading on R where deg xi = nci and deg z = m. Note that under
this grading deg g =

∑
deg hi = mn. The n-th Veronese subring of R is

R(n) = k[zn, x1, . . . , xd]/(zn − g) = k[x1, . . . , xd] ,

which is a polynomial ring in x1, . . . , xd. Let X = ProjR(n) = ProjR.
There exist integers si, a, and b such that

∑d
i=1 sici = 1 and am + bn = 1.

Consider the Q-divisor on X given by

D = bdiv(x) +
a

n
div(g) = b

d∑
i=1

siV (xi) +
a

n

r∑
i=1

V (hi) ,

where x = xs11 · · ·x
sd

d . We claim that

(3.1.1) R = ⊕j>0H
0(X,OX(jD))T j ,
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where T = zaxb is a homogeneous degree 1 element of the fraction field of R. First
note that bam/nc = b(1− bn)/nc = −b, so

bmDc = bmdiv(x) +
⌊am
n

⌋
div(g) = bmdiv(x)− bdiv(g) .

Consequently degbmDc = 0, andH0(X,OX(mD))Tm is the k-vector space spanned
by the element

x−bmgbTm = x−bm(zn)b(zaxb)m = zbn+am = z .

Let c = ct for an integer 1 6 t 6 d. Then ncD = bnc div(x) + acdiv(g) has degree
nc, and H0(X,OX(ncD))Tnc contains the element

xtx−bncg−acTnc = xtx−bnc(zn)−ac(zaxb)nc = xt .

To prove the claim (3.1.1), it remains to verify that z, x1, . . . , xd are k-algebra
generators for the ring ⊕j>0H

0(X,OX(jD))T j . An arbitrary positive integer j
can be written as um+ vn for 0 6 u 6 n− 1. We then have

bjDc = b(um+ vn) div(x) +
⌊
a(um+ vn)

n

⌋
div(g)

= b(um+ vn) div(x) + (va− ub) div(g) ,

which has degree vn. Consequently H0(X,OX(jD))T j vanishes if v is negative,
and for nonnegative v, it is spanned by elements

µx−b(um+vn)g−va+ubTum+vn = µzu ,

for monomials µ in xi of degree v. This completes the proof of (3.1.1).
Since nD has integer coefficients, the exact sequence of Theorem 2.2 for the

divisor nD and corresponding ring R(n) reduces to

0 −−−−→ Z θ−−−−→ Cl(X) −−−−→ Cl(R(n)) −−−−→ 0 ,

where θ(1) = nD. Since R(n) is a polynomial ring, and hence factorial, it follows
that nD generates Cl(X). Next, consider the exact sequence applied to the divisor
D and corresponding ring R, i.e., the sequence

0 −−−−→ Z θ−−−−→ Cl(X) −−−−→ Cl(R) −−−−→ cokerα −−−−→ 0 .

The lcm of the denominators occurring in D is n, so we once again have θ(1) = nD.
Consequently θ is an isomorphism and Cl(R) = cokerα, where

α : Z −→
r⊕
1

Z/nZ with α(1) = (a, . . . , a) .

Since a and n are relatively prime, it follows that

Cl(R) = (Z/nZ)r−1 .

We next determine explicit generators for Cl(R) by Remark 2.3. The Q-divisors

Et = − 1
n
V (ht) for 1 6 t 6 r

give a generating set for Div(X,D)/Div(X) which surjects onto Cl(R). Hence the
divisorial ideals

pt = ⊕j>0H
0(X,OX(Et + jD))T j where 1 6 t 6 d ,
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generate Cl(R). The computation of pt is straightforward, and we give a brief
sketch. First note that

bEt +mDc = bmdiv(x) +
⌊
am− 1
n

⌋
V (ht) +

∑
i 6=t

⌊am
n

⌋
V (hi)

= bmdiv(x)− bdiv(g) ,

so H0(X,OX(Et +mD))Tm is the k-vector space spanned by

x−bmgbTm = z.

Since the degree of each xi is a multiple of n, we have deg ht = nγ for some integer
γ. We next compute the component of pt in degree nγ. Note that

bEt + nγDc = −V (ht) + bnγ div(x) + aγ div(g) ,

so H0(X,OX(Et + nγD))Tnγ is the k-vector space spanned by

htx−bnγg−aγTnγ = ht.

It is now a routine verification that z, ht are generators for the ideal pt, which, we
note, is a height one prime of R. Consequently Cl(R) is generated by p1, . . . , pr.
Using ∼ to denote linear equivalence, we have

nEt + nγD ∼ 0 and
r∑
i=1

Ei +mD ∼ 0 ,

implying that n[pt] = 0 and
∑
i[pi] = 0 in Cl(R). These correspond to the calcula-

tions with divisorial ideals,

p
(n)
t = htR and

r⋂
i=1

pi = zR ,

and imply, in particular, that [p1], . . . , [pr−1] is a generating set for Cl(R). �

Example 3.2. We use Proposition 3.1 to compute the divisor class group of
diagonal hypersurfaces

R = k[z, x1, . . . , xd]/(zn − xm1
1 − · · · − xmd

d )

where n is relatively prime to mi for 1 6 i 6 d, and k is a field of characteristic
zero, or of characteristic not dividing each mi.

By the Jacobian criterion, R has an isolated singularity at the homogeneous
maximal ideal m. Hence if d > 4, then R, as well as its m-adic completion R̂, are
factorial by Grothendieck’s parafactoriality theorem [5]; see [2] for a simple proof
of Grothendieck’s theorem.

Case d = 3. The polynomial g = xm1
1 + xm2

2 + xm3
3 is irreducible since

k[x1, x2, x3]/(g) is a normal domain by the Jacobian criterion. We set deg xi to be
m1m2m3/mi. Then g is a weighted homogeneous polynomial of degree m1m2m3,
which is relatively prime to n, so Proposition 3.1 implies that R is factorial. Since R
satisfies the Serre conditions (R2) and (S3), the completion R̂ is factorial as well by
[4, Korollar 1.5]. The divisor class groups of rational three-dimensional Brieskorn
singularities are computed in [1, Chapter IV]; see also [13].

Case d = 2. Let g = xm1
1 + xm2

2 . If c = gcd(m1,m2), let m1 = ac and m2 = bc,
and set deg x1 = b and deg x2 = a. Let f be an irreducible factor of g. Then f is
homogeneous, and hence has the form

∑
aijx

i
1x
j
2 where aij ∈ k and bi+ cj = deg f
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for each term occurring in the summation. Since x1 and x2 do not divide g, we see
that f must contain nonzero terms of the form a0jx

j
2 and ai0x

i
1. Hence deg f is a

multiple of ab, and it follows that f is a polynomial in xa1 and xb2. Consequently
the number of factors of g in k[x1, x2] is the number of factors of sc + tc in k[s, t]
or, equivalently, the number of factors of 1 + tc in k[t].

In particular, if m1 and m2 are relatively prime, then g is irreducible and
Proposition 3.1 implies that R is factorial. As is well-known, R̂ need not be factorial;
see for example, [10, Theorem III.5.2].

If k is algebraically closed, then g is a product of c irreducible factors, and so
Proposition 3.1 implies that

Cl(R) = (Z/nZ)c−1 .

Remark 3.3. The condition that the degree of g is relatively prime to n is
certainly crucial in Proposition 3.1. In the absence of this, Cl(R) need not be finite,
for example C[z, x1, x2, x3]/(z3−x3

1−x3
2−x3

3) has divisor class group Z6. However,
one can drop the relatively prime condition when considering hypersurfaces of the
form zn − x0g(x1, . . . , xd), see also [6, Proposition 3.12]:

Corollary 3.4. Let R = k[z, x0, . . . , xd]/(zn− x0g) be a normal hypersurface
over a field k, where g is a weighted homogeneous polynomial in x1, . . . , xd. Let
g = h1 · · ·hr, where hi ∈ k[x1, . . . , xd] are irreducible. Then

Cl(R) = (Z/nZ)r ,

and the images of (z, h1), . . . , (z, hr) form a minimal generating set for Cl(R).

Proof. We may choose the degree of x0 such that deg(x0g) is relatively prime
to n. The result then follows from Proposition 3.1. �

We conclude with the following example.

Example 3.5. Let k be a field. Corollary 3.4 implies that the divisor class group
of the ring R = k[xy, xn, yn] is Z/nZ, since R is isomorphic to the hypersurface

k[z, x0, x1]/(zn − x0x1) .

In [10, Chapter III], the divisor class group of R is computed by Galois descent if
n is relatively prime to the characteristic of k, and by using derivations if n equals
the characteristic of k.
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