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(1) Define f : R2 → R by

f(x, y) =

{
x3

x2+y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

Prove the following statements:
(a) f is continuous on R2.
(b) ∂f

∂x
and ∂f

∂y
exist on all of R2 and are bounded.

(c) At (0, 0) the directional derivatives Dvf exist for all unit vectors v ∈ R2.
(d) f is not differentiable at (0, 0).

(2) Define f : R2 → R by

f(x, y) =

{
x4

x2+y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

(a) Prove, directly from the definition of differentiability, that f is differentiable at
(0, 0), and find its derivative d(0,0)f .

(b) Show that the partial derivatives ∂f
∂x

and ∂f
∂y

exist and are continuous on all of R2.
Observe that this gives another proof of the differentiability of f at (0, 0).

(3) Let f : R2 → R2 be defined by

f(x, y) = (x2 − y2, 2xy) = (u, v)

(a) Observe that f(−x,−y) = f(x, y), so f is not (globally) injective.
(b) Use the Inverse Function Theorem to prove that if (x0, y0) 6= (0, 0), then (x0, y0)

has a neighborhood U with the property that f maps U bijectively to its image
V = f(U).

(c) Prove that (0, 0) has no such neighborhood.
(d) Find explicit formulas for a local inverse of f |U where U is a neighborhood of

(1, 0).

(4) (Rudin Chap 9, Ex 16) Let

f(t) =

{
t+ 2 t2 sin(1

t
) if t 6= 0,

0 if t = 0.
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Show
(a) f is differentiable.
(b) f ′(0) = 1.
(c) f ′ is bounded on (−1, 1).
(d) f is not one-to-one in any neighborhood of 0. Thus the continuity of f ′ is needed

in the inverse function theorem.

(5) Let U ⊂ Rn be open and let f : U → R be of class C1 (continuously differentiable).
Recall that if p ∈ U and v is a unit vector, the directional derivative of f at p in
direction v, (Dvf)(p) is defined to be

Dvf(p) = (
d

dt
f(p+ tv))|t=0 = dpf(v) = ∇pf · v

the second equality by the chain rule, the third the definition of the gradient. A point
p ∈ U is called a critical point of f if dpf = 0⇐⇒ ∇pf = 0
(a) Prove that if p is a local maximum of f , then it is a critical point of f . Same for

a local minimum.
(b) (This is a quick explanation of the Lagrange multiplier method. More details

later in class)
If g : U → R is also C1, if G = {p ∈ U : g(p) = 0} and dpg 6= 0 for all p ∈ G,
then the implicit function theorem can be used to rigorously define critical points
of the restriction f |G and to prove that a local maximum or minimum of this
restriction is a critical point. Moreover, there is a useful criterion for p0 ∈ G to
be critical for f |G, the Lagrange multiplier method:

p0 ∈ G is critical for f |G ⇐⇒ ∃λ ∈ R s.t. ∇p0f = λ∇p0g.

Since, by assumption,∇pg 6= 0 for all p ∈ G, the orthogonal complement∇pg
⊥

is the tangent space toG at p and the Lagrange multiplier condition is equivalent
to

∇p0f is perpendicular to (∇p0g)
⊥

or, briefly,∇p0f is perpendicular to G at p0.
Let’s take all this for granted.

(c) Let x0 ∈ Rn and let f : Rn → R be square distance from x0:

f(x) = |x− x0|2 = (x− x0) · (x− x0)
where u · v is the usual dot product of vectors in Rn. Find ∇xf .
Suggestion: Expand (x + h − x0) · (x + h − x0) and compute dxf(h) directly
from the definition of dxf .

(d) As above, let g : Rn → R be C1, let G = {g = 0} and suppose ∇pg 6= 0 for all
p ∈ G. Suppose x0 /∈ G and suppose x1 ∈ G minimizes the distance |x − x0]
for x ∈ G. Prove that x1 − x0 is perpendicular to G.
Comment: We have used this in the past for g a linear function.


