Math 3070 § 1. Birth Weight Example: Name: Crample
Treibergs One Sample z-Test, CI and Power May 27, 2011

This exercize is about z-tests. For large sample sizes n > 40, by rule of thumb, the statistic
s/\/n

is approximately normal, and hypothesis tests can be made using critical z-values. In fact, for
normal data, this statistic satisfies the ¢-disribution with n — 1 degrees of freedom, and the t-test,
which is canned in R is usually used.

We analyze the birth weights observed by Secher in the ISwR package. For sake of concreteness,
we ask: are the birthweights of European babies significantly above 6 pounds? (I don’t know if
anyone would ever want to do this!) We calculate the statistic and p-value “by hand” and find
that the average is not significantly higher at all. Let pg = 2721.6 grams. This is 6 pounds times
453.6 grams per pound. the null and alternative hypotheses are

t

Hy: The mean p < po;
H,: The mean p > pp.

For this one-tailed test, we compute the statistic ¢ and reject the null hypothesis if ¢ > z,. At
the a = .05 significance level, z, = ®~1(1 — a) or about z g5 = 1.645.

We then go on to find 3, the probability of a Type II error. In the case of z tests, this can be
computed using normal probabilities. If population mean is p; instead, 5(u1) = P(Hp is accepted|u =
p1). This becomes

X - X -
B:P(ngam:,ul):P( S/ﬁogzau:m):@(z: s/\/%l Sza—d>

where the normalized difference is
d = M1 — Mo
The two tailed situation is similar. This time z o5 = 1.960 and
B=P (=202 <T < zop2lpp = )
=P <_Za/2 < —

Ho
< Zojolp = m)
S n

We plot curves showing how 3 depends on d. We also plot normal curve diagrams of the areas
these probabilities correspond to.
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# Do random European babies exceed 6 1b birthweight?

# Secher 1987 study of European babies is a canned dataset

# secher 1in the package ISwR. Load the package and look at
# the first few lines. The variable bwt is the birthweight.

library (ISwR)
head (secher)
bwt bpd ad no
2350 88 92 1
2450 91 98 2
3300 94 110 3
1800 84 89 4
5
6
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2900 89 97
3500 100 110

attach(secher)
summary (bwt)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1150 2400 2800 2739 3125 4850

VvV V.V.O Od W+~

> n <- length(bwt);n
[1] 107

xbar <- mean(bwt)

s <- sd(bwt)

# Standardizing means that the QQ points will line up on y = 0 + 1 * x:

z <- (bwt-xbar)/s

qgnorm(z,ylab="Standardized Birth Weights",main="QQ Plot of Birthweights")
abline(0,1,col=4)

# M3074BirthWeightl.pdf
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QQ Plot of Birthweights
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Theoretical Quantiles

# Looks pretty notmal!

>
>
> # there are 453.6 grams / pound so 6 1b is in grams
> mu0 <- 6 * 453.6;mu0

[1] 2721.6

# Do random European babies exceed 6 1lb birthweight?

# Do random European babies significantly exceed 6 1lb birthweight?
# Compute the T statistic and the p-value

T <- (xbar-mu0)/(s/sqrt(n)); T

[1] 0.2621352
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> pv <- pnorm(T,lower.tail=F); pv
[1] 0.3966086

# So we can’t reject the null hypothesis.

# 95), lower CI for birthweight

alp <- 0.05; alp

[1] 0.05

> zalpha <- gnorm(alp,lower.tail=F); zalpha
[1] 1.644854

>
>
>
>
>

> 1lci <- xbar - zalpha * s/sqrt(n); lci
[1] 2629.325

> # We can make it look like R output.

>

> cat(" One Sample z-test\n\n z =", T, ", p-value =", pv,

+ "\n alternative hypothesis: true mean is greater than", mu0,
+ "\n Level ",alp,"confidence interval:\n",lci,

+ " Inf\n sample estimate:\n mean of x\n",xbar,"\n\n")

One Sample z-test

z = 0.2621352 , p-value = 0.3966086

alternative hypothesis: true mean is greater than 2721.6
Level 0.05 confidence interval:

2629.325 Inf

sample estimate:

mean of x

2739.093

> # Running the t-test yields almost the same.
>

> t.test(bwt,alternative="greater" ,mu = 2721.6)

One Sample t-test

data: bwt
t = 0.2621, df = 106, p-value = 0.3969
alternative hypothesis: true mean is greater than 2721.6
95 percent confidence interval:
2628.357 Inf
sample estimates:
mean of x
2739.093



#H#HHHHE R BETA COMPUTATIONS ######iH####### I R

# If true mean weight was mul then for

# beta = P(z <= zalpha - d)

>
>
>
> # d = (mul-mu0)/(sigma/sqrt(n) ) we have
>
>
>

d =seq(from=.1,to=2, by=.1);d
[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
> pnorm(zalpha-d)

.01.11.21.31.41.51.61.71.81.9 2.0

[1] 0.9388092 0.9257505 0.9106637 0.8934072 0.8738651 0.8519547 0.8276332 0.8009037
[9] 0.7718199 0.7404890 0.7070729 0.6717872 0.6348978 0.5967151 0.5575868 0.5178880
[17] 0.4780109 0.4383530 0.3993050 0.3612400

> # For example, if the actual mu = mu0 = 3628.8 gm (=8 1b) then the probability of

> # accepting mu <= 6 1b is

> pnorm(zalpha - (3628.8-2721.6)/(s/sqrt(n)))

[1] 3.273038e-33

> # For example, if the actual mu = mu0 = 3175.2 gm (= 7 1b) then the probability of

> # accepting mu <= 6 1b is

> pnorm(zalpha - (3175.2-2721.6)/(s/sqrt(n)))

[1] 1.287023e-07

> # for example, if the actual mu = mu0 = 2948.4 gm (= 6.5 1b) then the probability of

> # accepting mu <= 6 1b is

> pnorm(zalpha - (2948.4-2721.6)/(s/sqrt(n)))

[1] 0.0397419

# density curve with mean ¢ and sd =1
# the bell curve.

plo <- function(a,b,c,co,cl){

3

# Now, plot the alpha and beta areas for

coll <- rainbow(12,alpha=.5)[2];c0lll <-
col2 <- rainbow(12,alpha=.5) [7];coll2 <-
plo(-4,zalpha,1,coll,colll)
plo(zalpha,4,0,co0l2,coll2)

fill=c(co0ll2,co0l2,co0lll,coll))
abline(v=zalpha,col=3) ;abline (h=0)
# M3074BirthWeight2.pdf
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plot(x,y,type="n",xlim=c(-4,4) ,ylim=c(0, .

legend (-4, .5,legend=c("Normal with mu=0",

plot(x,y,type="n",xlim=c(-4,4) ,ylim=c(0, .

HH R4 NORMAL CURVES SHOWING ALPHA AND BETA ############H#$H#HHEH I HEHHH
# Make a function that inputs a,b,c , fill color and line color, and outputs a normal

and color in the region under the curve from

# a to b. In fact, the coloring is done by making a polygon with 100 points along

xx <- c(a,seq(a,b,(b-a)/100),b,a)

yy <- c(0,dnorm(seq(a,b, (b-a)/100)-c),0,0)
curve (dnorm(x-c),-4,4,add=T,col=cl)
polygon(xx,yy,col=co,border=cl)

two different d’s. beta decreases as d increases.
5) ,main="beta for Upper-Tailed z-test",xlab="d4")
rainbow(12) [1]

rainbow(12) [9]

"Area = alpha","Normal with mu=d","Area = beta"),

5) ,main="beta for Upper-Tailed z-test",xlab="d4")



V V + V V V

plo(-4,zalpha,2.5,coll,colll)

plo(zalpha,4,0,col2,coll2)

legend (-4, .5,legend=c("Normal with mu=0","Area = alpha","Normal with mu=d","Area = beta"),
fill=c(coll2,co0l2,colll,coll))

abline(v=zalpha,col=3) ;abline(h=0)

# M3074BirthWeight3.pdf
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beta for Upper-Tailed z-test
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> # FOR THE TWO-TAILED TEST WE ALSO HAVE SIMILAR DIAGRAMS.
> za2 <- gnorm(.025,lower.tail=F)

> za2

[1] 1.959964
plot(x,y,type="n",xlim=c(-4,4) ,ylim=c(0, .5) ,main="beta for Two-Tailed z-test,
alpha=.05",xlab="d")

plo(-4,za2,1,coll,colll)

plo(-4,-za2,1,"white",colll)

plo(za2,4,0,c0l2,co0ll2)

plo(-4,-za2,0,co0l2,co0ll2)

abline(v=c(-za2,za2),col=3) ;abline (h=0)
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legend(-4,.5,legend=c("Normal with mu=0","Area = alpha","Normal with mu=d","Area = beta"),
fill=c(coll2,co0l2,co0lll,coll) ,bg="white")
# M3074BirthWeight6.pdf

plot(x,y,type="n",xlim=c(-4,4),ylim=c(0, .5) ,main="beta for Two-Tailed z-test,
alpha=.05",xlab="4d")

plo(-4,za2,3,coll,colll)

plo(-4,-za2,3,"white",colll)

plo(za2,4,0,co0l2,co0ll2)

plo(-4,-za2,0,co0l2,co0ll2)

abline(v=c(-za2,za2),co0l=3) ;abline (h=0)

legend (-4, .5,legend=c("Normal with mu=0","Area = alpha","Normal with mu=d","Area = beta"),
fill=c(coll2,co0l2,co0lll,coll) ,bg="white")

# M3074BirthWeight7.pdf
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HEHFHHHHHH R Deta AS A FUNCTION OF 4 ##########HHH## A
# One tailed computation beta computation.

# If true mean weight was mul

# let d = (mul-mu0)/(sigma/sqrt(n) ) then

# beta = P(z <= zalpha - d)

curve (pnorm(zalpha-x),0,4,main="beta Curve for One-Tailed z-test, alpha=.05",
x1im=c(0,4),ylim=0:1,col=3,ylab="beta",xlab="d")

abline(v=0,col="gray") ;abline(v=1:20/5,col="gray",1ty=3)
abline(h=c(0,.95,1),col="gray");abline(h=1:9/10,col="gray",1ty=3)

# M3074BirthWeight4.pdf

# Two tailed computation beta computation.
# If true mean weight was mul then
# beta = P( -za2 <= X <= za2 | mu = d) or
# beta = P(-za2 - d <= z <= za2-d)

V VVVVVVVVYV + VVVVVYVYV

d =seq(from=.1,to0=2, by=.1);d
[1] 0.1 0.2 0.3 0.4 0.50.6 0.7 0.80.91.01.11.21.31.41.51.61.71.81.9 2.0
>
> be <- function(x,za){pnorm(za-x)-pnorm(-za-x)}
> be(d,za2)
[1] 0.9488537 0.9454053 0.9396274 0.9314774 0.9209025 0.9078452 0.8922514 0.8740779
[9] 0.8533011 0.8299250 0.8039887 0.7755730 0.7448044 0.7118582 0.6769588 0.6403775
[17] 0.6024281 0.5634603 0.5238511 0.4839947
> coll <- rainbow(12,alpha=.5) [4];colll <- rainbow(12) [7]
> co0l2 <- rainbow(12,alpha=.5)[10];c0ll2 <- rainbow(12) [11]
> curve(be(x,za2),0,4,main="beta Curve for Two-Tailed z-test, alpha=.05",
+ xlim=c(0,4) ,ylim=0:1,col=2,ylab="beta")
> abline(v=0,col="gray");abline(v=1:20/5,col="gray",1ty=3)
> abline(h=c(0,.95,1),col="gray") ;abline(h=1:9/10,col="gray",1ty=3)
> # M3074BirthWeight5.pdf
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beta

beta Curve for One-Tailed z-test, alpha=.05
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beta Curve for Two-Tailed z-test, alpha=.05
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