Math 3070 § 1.	Heart Attack Example: Statistic	Name: Erample
Treibergs	for the Ratio of Two Proportions	July 24, 2011

Today's example was motivated by problem 9.53 of Devore, Probability and Statistics for Engineering and the Sciences, 5nd ed., Brooks Cole 2000, that discusses a statistic for the ratio of two proportions. In medical research, it is sometimes more interesting to know $\theta = p_1/p_2$, the ratio of two proportions, rather than the difference $p_1 - p_2$. We ask, how much larger is the incidence of heart attack with no treatment than the incidence of those given aspirin?

Devore describes the data which comes from a study reported in the New York Times, 1987. The study compared the number of heart attacks in a randomized control group given a placebo vs. the number of heart attacks in the group given aspirin. Of the m = 11,034 subjects in the placebo group, x = 189 developed heart attacks. But of the n = 11,037 subjects in the aspirin group, y = 104 developed heart attacks. By what factor is the incidence of heart attacks reduced? Find a .005 confidence interval for θ . An estimator for θ is

$$\hat{\theta} = \frac{\hat{p}_1}{\hat{p}_2} = \frac{x/m}{y/n} = \frac{xn}{my}$$

which works out to be 1.818.

Devore describes the statistic that works for large samples. $\log(\hat{\theta})$ has approximately a normal distribution, with approximate mean $\log(\theta)$ and standard deviation

$$\hat{s} = \sqrt{\frac{\hat{q}_1}{\hat{p}_1 m} + \frac{\hat{q}_2}{\hat{p}_2 n}} = \sqrt{\frac{m-x}{mx} + \frac{n-y}{ny}}$$

where $\hat{q}_i = 1 - \hat{p}_i$. Thus, assuming that $\theta = \theta_0$, the normalized statistic is

$$zQ = \frac{\log\left(\frac{xn}{ym}\right) - \log\theta_0}{\sqrt{\frac{m-x}{mx} + \frac{n-y}{ny}}}.$$

To see how this behaves, we take B = 10,000 samples $x \sim \text{Binomial}(m, p_1)$ and $y \sim \text{Binomial}(n, p_2)$, compute zQ and tabulate. The histogram agrees with the standard normal curve. In our simulation $p_1 = .6$, $p_2 = .7$, m = 150 and n = 100.

Now, using the asymptotic normality, we obtain α confidence intervals for $\log(\theta)$. If z_{α} is chosen so that $\Phi(z_{\alpha}) = 1 - \alpha$, then the lower and two-sided CI for $\log(\theta)$ is

$$(\log(\hat{\theta}) - z_{\alpha}\hat{s}, \infty);$$

$$(\log(\hat{\theta}) - z_{\alpha/2}\hat{s}, \log(\hat{\theta}) + z_{\alpha/2}\hat{s})$$

In case $\alpha = .001$, this works out to be $(0.2226368, \infty)$. Taking exponentials, we are $1 - \alpha$ confident that θ satisfies the CI, $1.219 < \theta$. The $\alpha = .05$ CI is $1.489 < \theta$. Taking aspirin reduces incidence of heart attack by 30% (= 1 - 1/1.489).

R Session:

R version 2.13.1 (2011-07-08) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i386-apple-darwin9.8.0/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

```
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
  Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[R.app GUI 1.41 (5874) i386-apple-darwin9.8.0]
[History restored from /Users/andrejstreibergs/.Rapp.history]
> n <- 100
> m <- 150
> st <- function(x,y){sqrt((m-x)/(m*x)+(n-y)/(n*y))}</pre>
> mu <- log(.6/.7)
> mu
[1] -0.1541507
> s <- sqrt((1-.6)/(.6*m)+(1-.7)/(.7*m))</pre>
> s
[1] 0.08544933
> # Function to take two random binomial variables and compute zQ
> zl <- function(z){</pre>
                   x <- rbinom(1,m,.6)</pre>
                   y <- rbinom(1,n,.7)</pre>
+
+
                   (log(x*n/(m*y))-mu)/st(x,y)
+
                  }
>
> B <- 100000
> hist(replicate(B, zl(1)), breaks = 40, freq = F,
+ xlab = "zQ-Statistic", main =
+ paste("Simulation of zQ-Statistic. (p1,p2)=(.6,.7)\n
+ Sample Size (m,n)=(", m, ",", n, ") Number of Trials =", B),
+ col = rainbow(40, alpha = .5))
> curve(dnorm(x), -4, 4, add = T, 1wd = 3, col = 2)
> # M3074HeartAttack1.pdf
```

```
> # heart Attack data: Placebo
> x <- 189
> m <- 11034
> # after aspirin:
> y <- 104
> n <- 11037
> # zQ statistic
> mu=0
> zQ <- (log(x*n/(m*y))-mu)/st(x,y)</pre>
> ZQ
[1] 4.92494
> # P-value for two sided test with theta0=1
> pvalue=pnorm(zQ, 0, 1, lower.tail = F)*2
> pvalue
[1] 8.438621e-07
> s <- st(x,y)
> alpha <- .001
> za2 <- qnorm(alpha/2,0,1,lower.tail=F); za2</pre>
[1] 3.290527
> za <- qnorm(alpha,0,1,lower.tail=F); za</pre>
[1] 3.090232
>
> lthetahat <- log(x*n/(m*y)); lthetahat</pre>
[1] 0.597628
>
> # Lower CI
> c(-Inf, lthetahat+za*s)
[1]
      -Inf 0.9726192
> # 2-sided .005 CI
> c(lthetahat-za2*s, lthetahat+za2*s)
[1] 0.1983316 0.9969244
>
> # CI on p1/p2
> # Lower CI
> c(thetahat-za*s,Inf)
[1] 0.2226368
                   Inf
> # 2-sided .005 CI
> c(thetahat-za2*s,thetahat+za2*s)
[1] 0.1983316 0.9969244
>
> # CI on p1/p2
> # Lower CI
> c(exp(thetahat-za*s),Inf)
[1] 1.249367
                Inf
> # 2-sided .005 CI
> c(exp(thetahat-za2*s),exp(thetahat+za2*s))
[1] 1.219367 2.709934
```

```
> alpha <- .05
> za <- qnorm(alpha,0,1,lower.tail=F); za</pre>
[1] 1.644854
> za2 <- qnorm(alpha/2,0,1,lower.tail=F); za2</pre>
[1] 1.959964
> # Lower CI
> c(thetahat-za*s,Inf)
[1] 0.3980295 Inf
> # 2-sided .05 CI
> c(thetahat-za2*s,thetahat+za2*s)
[1] 0.3597917 0.8354642
> # CI on p1/p2
> # Lower CI
> c(exp(thetahat-za*s),Inf)
[1] 1.488888
              Inf
> # 2-sided .05 CI
> c(exp(thetahat-za2*s),exp(thetahat+za2*s))
[1] 1.433031 2.305884
```

