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(1.) A standard deck of cards has 52 cards, thirteen cards {2−10, J,Q,K,A} in each of four suits ♣, ♦, ♥ and ♠.
Five cards are drawn at random without repalcement. What is the probability drawing a royal flush? (10,J,Q,K,A
of the same suit.) What is the probability of drawing a flush? (All five cards of the same suit.) What is the
probability of of drawing a full house? (three of one kind and a pair of another, e.g. {8♣, 8♥, 8♠,K♦,K♥}.)

We assume that each hand is equally likely. There are a total of N =
(
52
5

)
= 2, 598, 960 five card hands

(order not important), drawn without replacement. There are n1 = 4 royal flushes, only one A,K,Q, J, 10
per suit, so the probability of drawing a royal flush is P = n1/N = 1.539 × 10−6. The number of flushes is
n2 = 4

(
13
5

)
= 5, 148, the number of choices of suit times number of five card hands in a suit so the probability of

a flush is P = n2/N = .00198. The number of hull houses is n3 = 13 ·
(
4
3

)
· 12 ·

(
4
2

)
= 3744, the number of ways

of choosing a kind for the three times the number of subsets of three in four suits times the number of remaining
kinds for the pair times the number of pairs in four suits, so the probability of a hull house is n3/N = .00144.
(2.) A study of the ability of a cylindrical piece of metal to be formed into the head of a bolt or screw, ”headability”
did impact tests on specimens of aluminum killed steel and specimens of silicon killed steel. Random samples
of the two types of metal gave the following sample statistics. Assume that the headability distributions are
approximately normal. Do you agree with the authors that the difference in headability ratings is significant at
the 5% level? State the null and altrenative hypotheses. State the test statistic why it is appropriate. State the
rejection region for the null hypothesis. Compute and draw a conclusion.

Number Sample Mean xi Sample Std. Dev. si
Aluminum killed steel: 41 7.14 1.20

Silicon killed steel: 42 7.87 1.32
Let µ1, µ2 be means for the means of headability ratings for aluminum killed steel and for the carbon killed

steel, resp. The null hypothesis H0 : µ1 = µ2 and the alternate is H0 : µ1 6= µ2. Since n2 > n1 > 40 we may
regard this as a large sample, although since it is borderline large, the results will be approximate. Thus we use
the z-test with σi ≈ si. Thus we reject the null hypothesis if z ≤ −z.025 or z ≥ z.025 = 1.960. The statistic is

z =
x̄1 − x̄2√
σ2
1
n1

+ σ2
2
n2

=
7.14− 7.87√
1.202

41 + 1.322

42

= −2.710.

Thus we reject the null hypothesis: the difference of headability is significant.
(3.) Two candidates AA and GW are running for office in a certain state. It is believed that 0.5 of the voters
favor AA. Suppose you conduct a poll to test the alternative hypothesis that more than 0.5 of the voters favor
AA. In a random sample of 15 voters, let X denote the number who favor AA. Suppose that the rejection region
for the null hypothesis is X ≥ 9.

a. What is the probability of making a Type I error, that is, of rejecting H0 even though it is true?
b. What is the probability of a Type II error, that is of accepting H0 even though the alternative is true, that

actually 0.7 of the voters favor AA?
c. How many voters should you poll in order to be sure that the probability of both errors be at most .05?
The null hypothesis H0 : p = .5 and the alternativs H1 : p > .5. The statistic is x/n, the number who favor

AA over the number polled. x is approximately a binomial variable. If H0 is true, p = .5. The probability of
type-I error, that of rejecting the null hypothesis when it is true is

α = P (x ≥ 9|p = .5) = 1− P (x ≤ 8|p = .5) = 1− Bin(8; .5, 15) = 1− .6964 = .3036.
The probability of a type-II error, accepting H0 even if it’s false, p = .7, is

β(.7) = P (x ≤ 8|p = .7) = Bin(8; .7, 15) = .1311.

To make sure that both α and β are less than .05, assume that the sample will be large and compute β in the
z-distribution for the given α. Thus, the statistic is

z =
p̂− p0√
p0q0/n



and H0 is rejected if z ≥ z.05 = 1.645, or p̂ ≥ p0 + zα
√

p0q0
n . Thus the probability of type-II error, that is of

accepting H0 when it is false, p = .7 = p′, is using σ′ =
√
p′q′/n and standardizing

P (z ≤ −zβ) = β = P

(
p̂ ≤ p0 + zα

√
p0q0
n

∣∣∣∣ p = p′
)

= P

(
z =

p̂− p′

σ′
≤
p0 + zα

√
p0q0
n − p

′

σ′

)
.

Thus, equating arguments,

−zβ

√
p′q′

n
= −σ′zβ = p0 + zα

√
p0q0
n
− p′

we solve for n to find

n =
(
zβ
√
p′q′ + zα

√
p0q0

p′ − p0

)2

=

(
1.645

√
(.7)(.3) + 1.645

√
(.5)(.5)

.7− .5

)2

= 62.1

so n = 63 would suffice.
(4.) Let X be be uniformly distributed in the interval 0 ≤ X ≤ 1. ( i.e. the pdf for X is f(x) = 1 if 0 ≤ x ≤ 1
and f(x) = 0 otherwise.) Suppose X1, X2, . . . , Xn is a random sample taken from this distribution.

a. Let X̄ = 1
n (X1 + · · ·+Xn) be the sample mean of the random sample. Find the expected value E(X̄) and

variance V (X̄).
b. What is the probability that the mean of a random sample of 100 such variables satisfies X̄ ≤ .45? Why

can you use a large sample approximation?
A single uniform random variable has mean and variance

µ = E(x) =
∫ 1

0

x dx =
1
2
, σ2 = E(X2)− µ2 =

∫ 1

0

x2 dx− µ2 =
1
3
− 1

4
=

1
12
.

Thus the linear combination, for independent uniform r.v.’s Xi (we’re assuming a random sample!)

E(X̄) =
1
n
E(X1) + · · ·+ 1

n
E(Xn) =

1
2n

+ · · ·+ 1
2n

=
n

2n
=

1
2
,

V (X̄) =
(

1
n

)2

V (X1) + · · ·+
(

1
n

)2

V (Xn) =
1

12n2
+ · · ·+ 1

12n2
=

n

12n2
=

1
12n

By the central limit theorem (n ≥ 30) the distribution of X̄ approximates normal, so standardizing,

P (X̄ ≤ .45) ≈ P
(
Z =

X̄ − µ
σ/
√
n
≤ .45− µ

σ/
√
n

)
= Φ

(
.45− .5

1/
√

12 · 100

)
= Φ(−1.732) = .0416,

writing Φ(z) = P (Z ≤ z), for the cumulative normal distribution function.
(5.) The weights of seven people who followed a certain diet were recorded before and after a 2-week period.
Compute a two-sided 95% confidence interval for the mean difference of the weights. Assume that the distribution
of weight differences is approximately normal.

Person 1 2 3 4 5 6 7
Weight before: 129 133 136 152 141 238 225
Weight after: 130 121 128 147 121 232 220

This is a paired t-test. Computing the differences di = (x2)i − (x1)i we get
di = 1,−12,−8,−5,−20,−6,−5 with n = 7, d̄ = −7.857 and s = 6.619. Thus with ν = n− 1 = 6 d.f., so

t.025,6 = 2.447, the two-sided .05 confidence interval is given by

−14.487 = −7.857− (2.447)
6.619√

6
= d̄− tα/2,ν

s√
n
≤ µd ≤ d̄+ tα/2,ν

s√
n

= −7.857 + (2.447)
6.619√

6
= −1.263.
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(6.) The desired percentage of SiO2 in a certain type of cement is 7.85. To test whether the true average
percentage is 7.85 for a particular production facility, 25 independent samples are analyzed. Suppose that the
percentage of SiO2 is approximately normally distributed with σ = .500 and that x̄ = 8.02. (a.)Does this indicate
conclusively that the true average differs from 7.85? State the null and altrenative hypotheses. State the test
statistic and why it is appropriate. State the rejection region for the null hypothesis. Compute the P -value and
draw a conclusion. (b.)If the true average percentage is µ = 8.10 and a level α = .05 test based on a test with
n = 25 is used, what is the probability of detecting this departure from H0? (c.)What value of n is required to
satisfy α = .05 and β(8.10) ≤ .05?

This is a test of mean where σ, the population standard deviation is known. The null hypothesis H0 : µ =

µ0 = 7.85; the alternative H1 : µ 6= µ0. Since σ is known, z =
x̄− µ0

σ/
√
n

is normally distributed for all n and so,

for a two-tailed test, we reject H0 if z ≥ zα/2 or z ≤ −zα/2. In this case, α = .05 so zα/2 = z.025 = 1.960.

P = 2P (Z ≥ |z|) = 2P
(
Z ≥ x̄− µ0

σ/
√
n

)
= 2P

(
Z ≥ 8.02− 7.85

.500/
√

25

)
= 2P (Z ≥ 1.70) = 2(.0446) = .0892.

This is greater than α so not significant: we accept the null hypothesis that the true average is 7.85.
If H0 is false and µ = µ′ = µ0 + d = 8.10, then the probability of accepting H0 is, by standardizing,

β =P
(
µ0 −

σzα/2√
n
≤ x̄ ≤ µ0 +

σzα/2√
n

∣∣∣∣µ = µ′
)

=P
(
µ0 − µ′

σ/
√
n
− zα/2 ≤ Z =

x̄− µ′

σ/
√
n
≤ µ0 − µ′

σ/
√
n

+ zα/2

)
P (Z ≤ −zβ) =P

(
Z ≤ µ0 − µ′

σ/
√
n

+ zα/2

)
− P

(
Z ≤ µ0 − µ′

σ/
√
n
− zα/2

)
Since µ′ > µ0 the last term is Φ(very neg.) ≈ 0 so we neglect it. Equating arguments we can solve for n,

−zβ ≈
µ0 − µ′

σ/
√
n

+ zα/2 =⇒ n ≈
(zα/2 + zβ)2σ2

(µ′ − µ0)2
=

(1.96 + 1.645)2(.500)2

(8.10− 7.85)2
= 51.98

so taking n = 52 will give α, β = .05.
(7.) A study of ionizing radiation as a method of preserving horticultural products reported that 147 of 186
irradiated garlic bulbs were marketable after 240 days of irradiation whereas only 132 of 186 untreated bulbs
were marketable after this length of time. Does this data suggest that ionizing radiation is beneficial as far as
marketability is concerned? State the null and altrenative hypotheses. State the test statistic and why it is
appropriate. Compute the P -value and draw a conclusion.

This is a test comparing two proportions. Let p1 be the proportion of irradiated bulbs marketable after 240 days
and p2 the proportion of marketable unirradiated bulbs. The studies have the data n1 = 186, p̂1 = 147/n1 = .790
so q̂1 = 1 − p̂1 = .210, n2 = 186, p̂2 = 132/n2 = .710 so q̂2 = 1 − p̂2 = .290. Since p̂1n1 ≥ q̂1n1 = 39 ≥ 10
and p̂2n2 ≥ q̂2n2 = 54 ≥ 10 we may use the large sample approximation. The null hypothesis is H0 : µ1 = µ2

and the alternative is H1 : µ1 > µ2, one-tailed, since we wish to see if there is strong evidence that irradiating
increases marketability. By the null hypothesis H0 : p1 = p2 we get a better esimate of proportion by pooling

p̄ =
x1 + x2

n1 + n2
=

147 + 132
186 + 186

= .750 =⇒ q̄ = 1− p̄ = .250.

The pooled z-score is

z =
p̂1 − p̂2√

p̄q̄
(

1
n1

+ 1
n2

) =
.790− .710√

(.75)(.25)
(

1
186 + 1

186

) = 1.782.

For one tailed tests, the P -value is P = P (Z ≥ z) = P (Z ≤ −1.782) = .0373. This is significant at the 5%
level, so we reject the null hypothesis: irradiating helps marketability.



(8.) Suppose the continuous variables X and Y satisfy the joint probability distribution

f(x, y) =
{
K(x2 + y2), if −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1.

0, otherwise.
(a.)Find K for f to be a pdf. (b.)Are X and Y independent? (c.)Are X and Y correlated?

To find K we compute the total probability 1 =
∫∞
−∞

∫∞
−∞ f(x, y) dxdy =

∫ 1

−1

∫ 1

−1
K(x2 + y2) dxdy =

2K
∫ 1

−1

∫ 1

−1
x2 dxdy = 8K

3 , so K = 3/8. To be independent, we have to check that f(x, y) = g(x)h(y) where

g(x) = h(x) (by symmetry) are the marginal probabilities. Thus

g(x) =
∫ ∞
−∞

f(x, y) dy =

 3
8

∫ 1

−1
x2 + y2 dy =

3x2 + 1
4

if −1 ≤ x ≤ 1,

0 otherwise.

Thus f(x, y) 6= g(x)h(y) so X,Y are not independent. Now, by symmetry,

µX = µY =
∫∞
−∞ xg(x) dx =

∫ 1

−1

3x3 + x

4
dx = 0 since the integrand is odd. The covariance is then

Cov(X,Y ) = E(XY )− µXµY =
∫ ∞
−∞

∫ ∞
−∞

xyf(x, y) dxdy − µXµY =
3
8

∫ 1

−1

∫ 1

−1

xy(x2 + y2) dxdy = 0

since the integrand is odd. This implies the variables are not correlated: their correlation coefficient ρ =
Cov(X,Y )/(σXσY ) = 0.

The following are questions focusing on the last quarter of the semester.

(1.) A plan for an executive traveller’s club has been developed by Useless Airlines on the premise that 5% of
its current customers would qualify for a membership. Of a random sample of 500 customers, 39 were found to
qualify.

(a.)With this data, test at the .05 level of significance the null hypothesis that 5% is correct against the
alternative that 5% is not correct.

(b.)What is the probability, that when the test in part (a.) were used, the company’s premise will be judged
correct when in fact 10% of all current customers qualify?

(c.)How large a random sample is required to be sure that the probability is at most 5% that when the test
in part (a.) were used, the company’s premise will be judged correct when in fact 10% of all current customers
qualify?

This is a test based on a single proportion. The alternate hypothesis is H1 : p 6= .05 = p0. Since n · p0 =
500 · .05 = 25 ≥ 10 and n(1− p0) ≥ 10 this is a large sample and the test statistic z is approximately normally
distributed. The rejection region for H0 at the α = .05 significance level is {z : z ≥ zα/2 or z ≤ −zα/2} where
zα/2 = 1.960. The estimator is p̂ = 39/500 = .078. The test statistic is

z =
p̂− p0√

p0(1− p0)/n
=

.078− .05√
(.05)(.95)/500

= 2.873

thus we reject the null hypothesis.
The probability of Type II error, that of accepting H0 given p = .10 = p′ is

β(.10) =P
(
p0 − zα/2

√
p0(1− p0)/n < p̂ < p0 + zα/2

√
p0(1− p0)/n

∣∣∣ p = p′
)

=P
(
p̂ < p0 + zα/2

√
p0(1− p0)/n

)
− P

(
p̂ ≤ p0 − zα/2

√
p0(1− p0)/n

)
≈Φ

(
p0 + zα/2

√
p0(1− p0)/n− p′√

p′(1− p′)/n

)
− Φ

(
p0 − zα/2

√
p0(1− p0)/n− p′√

p′(1− p′)/n

)
=Φ(−2.303)− Φ(−5.151) = .0105− .0000 = .0105.



Math 3070 § 1. Sample Final Exam December 6, 2004

Finally, to find the number required we set β(.10) = .05 we solve for n in the equation above. It can’t be
solved exactly. Since the second Φ contributes a very small amount (since p′ > p it represents the probability
below the lower cutoff for the rejection region) we simply neglect that term and solve β = Φ(−zβ) = Φ(?). Thus,
for β = .05 so zβ = 1.645, we solve

−zβ =
p0 + zα/2

√
p0(1− p0)/n− p′√

p′(1− p′)/n

to get

n ≈

[
zα/2

√
p0(1− p0) + zβ

√
p′(1− p′)

p′ − p0

]2

=

[
1.96
√
.05 · .95 + 1.645

√
.1 · .9

.1− .05

]2

= 339.1

so we need about n = 340. (As expected since for n = 500, β < .05.)
(2.) The mean annual snowfall in Juneau, Alaska is believed to be 100 in. per year. Assuming that the snowfall
distribution is approximately normal, test the hypothesis that the snowfall is 100 in. against the alternative that
it is more at the .05 level of significance, based on the random sample readings. Does the data strongly suggest
that the snowfall is higher? What is the P -value? 93.10, 115.93, 138.16, 124.01, 116.40, 128.76, 150.13, 95.74,
107.66, 108.17, 125.61, 104.89, 99.01.

The null hypothesis is H0 : µ = µ0 = 100.00 and the alternative H0 : µ > µ0. Since the sample is small
n = 13, with ν = n − 1 = 12 degrees of freedom, since we don’t know σ, the population standard deviation,
and since we have assumed that the temperatures are a random sample of approximately normal variables, the

appropriate statistic is T =
X̄ − µ0

S/
√
n

. At the α = .05 significance we reject H0 if T > tν,α = 1.782. The sample

mean and standard deviation are x̄ = 115.97 and s = 16.934 whence

t =
115.97− 100.00

16.934/
√

13
= 3.261 > t12,.05.

Thus we reject H0: the data suggests the snowfall is higher. The P -value is P = P (T ≥ t) = .003 (from
Table A8 of t-curve tail areas.)
(3.) The true average breaking strength of ceramic insulators of a certain type is supposed to be at least 10psi.
They will be used in a particular application unless data indicates conclusively that this specification has not been
met. A test of hypothesis using α = .01 is to be based on a random sample of 10 insulators. Assume that the
breaking strength’s distribution is normal with unknown standard deviation.

(a.) If the true standard deviation is .80, how likely is it that insulators will be judged satisfactory when the
true average breaking strength is only 9.5? 9.0?

(b.) What sample size would be necessary to have a 75% chance of detecting that the true average breaking
strength is 9.5 when the true standard deviation is .80?

The null hypothesis isH0 : µ = µ0 = 10.0 psi andHa : µ < µ0. Since the population is assumed to be normal,

σ is unknown and the sample size n = 10 is small, the appropriate statistic is T =
x̄− µ0

S/
√
n

and H0 is rejected

at α = .01 significance if T < −t9,.01 − 2.821. Suppose that the true breaking strength is µ′ < µ0 and that the
population standard deviation is σ = .80 then the probability of the Type II error β(µ′) = P (T > −t9,.01|µ = µ′)
can be found in Table A17. Computing

d(9.5) =
|µ0 − µ′|

σ
=
|10.0− 9.5|

.80
= .645; d(9.0) =

|10.0− 9.0|
.80

= 1.25

We read from the v = n − 1 = 9, one tailed, α = .01 power curve that β(d = .65, α = .01, ν = 9) ≈ .6
so β(9.5) ≈ .6 and since β(d = 1.25, α = .01, ν = 9) ≈ .2 so β(9.0) ≈ .2. To deduce the n required
is to find n so that β(9.5) = .25, that is, with .75 probability that H0 is rejected when µ = 9.5. Looking
in Table A17, for one tail tests, the point (d, β) = (.65, .25) lies between the ν = 19 and ν = 29 curves,
closer to the latter, so ν(α = .01, β = .25, d = .65) ≈ 25, approximately. The on-line power calculator (at
http://calculators.stat.ucla.edu/ ) yields n = 25.819, β(9.0) ≈ .156 and β(9.5) ≈ .738.
(4.) Suppose X1, . . . , Xn are independent Poisson variables, each with parameter λ. When n is large, the sample
mean X has approximately a normal distribution with µ(X) = λ and σ2 = V (X) = λ/n. This implies that



Z =
X − λ√
λ/n

has approximately a standard normal distribution. For testing H0 : λ = λ0, we can replace λ by λ0

in Z to obtain a test statistic. This statistic is actually preferred to the large sample statistic with denominator
S/
√
n when Xi’s are Poisson because it is taylored explicitly to the Poisson assumption. If the number of requests

for consulting for MyCo during a five day workweek has a Poisson distribution and the total number of consulting
requests during a 36 week period is 160, does this suggest that the true average number of weekly requests
exceeds 4.0? Test using α = .02.

The alternative hypothesis is Ha : λ > λ0 = 4.0. The average number of consulting requests in n = 36 trials
is x̄ = 160/36. At the α = .02 significance, H0 is rejected if z ≥ z.02 = 2.054 (Interpolate Table A5) Computing

z =
x̄− λ0√
λ0/n

=
160/36− 4.0√

4.0/36
= 1.333

thus the null hypothesis is accepted.
(5.) It is claimed that the resistance of electric wire can be reduced by more than .050 ohm by alloying. If a
random sample of 32 standard wires yielded a sample average of 0.136 and s = 0.004 ohm and a random sample
of 32 alloyed wires yielded a sample average 0.038 ohm and s2 = 0.005 ohm, at the .05 level of significance, does
this support the claim? What is the P -value? What is the probability of a Type II error if the actual improvement
is .100 ohm?

Let X denote the r.v. giving standard wire resistance and Y the alloyed wire resistance. Both are assumed
to be approximately normally distributed with means µ1, µ2 and standard deviations σ1, σ2 respectively. Let
θ = µ1−µ2. It is estimated by θ̂ = X̄ − Ȳ which is the difference of independent random samples of sizes n1, n2

resp. The null hypothesis is H0 : θ = θ0 = .050 and the alternative H1 : θ > θ0. The sample sizes are small
according to our rule of thumb (≤ 40). The σi’s are unknown, we use the two sample t-statistic. The degrees of
freedom is calculated from

ν =

(
s21
n1

+ s22
n2

)2

1
n1−1

(
s21
n1

)2

+ 1
n2−1

(
s22
n2

)2 =

(
(.004)2

32 + (.005)2

32

)2

1
31

(
(.004)2

32

)2

+ 1
31

(
(.005)2

32

)2 = 59.1

which gets rounded down to ν = 59. At the α = .05 level of significance, H0 is rejected if t ≥ t59,.05 = 1.671.
Computing

t =
θ̂ − θ0√
s21
n1

+
s22
n2

=
(.136− .038)− .050√

(.004)2

32
+

(.005)2

32

= 42.4

so the null hypothesis is rejected. Since for ν = 60, P (T ≥ 3.46) = .0005, the P -value for ν = 59 is
P (T ≥ t) ≈ .000 from Table A8. The β cannot be calculated easily because it depends on both s1 and
s2. However, by using the power calculator at http://calculators.stat.ucla.edu/ [p. 370] we find for
θ′ = .100 that β = .0000.
(6.) Find a two tailed 95% confidence interval for the difference of true average ultimate load (kN) of two
types of beams, fiberglass grid and carbon grid from the following random samples. Assume that the underlying
distributions are normal.

Fiberglass
grid:

34.4 29.9 34.2 34.9 32.6 31.2 32.6 32.6 33.2 32.4 33.1
36.3 33.3 36.5 30.4 36.7 34.8 36.5 31.3 29.2 31.9.

Carbon
grid:

50.0 36.8 39.2 41.9 36.1 40.3 43.3 50.5 40.1 33.0
34.6 39.4 50.6 51.0 45.0 45.9 42.6 45.7 45.6.

Let X denote the population of fiberglass beam ultimate loads, and Y the population of carbon beam ultimate
loads. Both are assumed to be approximately normal with with means µ1, µ2 and standard deviations σ1, σ2

respectively. Let θ = µ1 − µ2. It is estimated by θ̂ = X̄ − Ȳ which is the difference of independent random
samples of sizes n1, n2 resp. Since the sample sizes are small n1 = 21, n2 = 19 ≤ 40 and that the σi’s are



Math 3070 § 1. Sample Final Exam December 6, 2004

unknown, we use the two sample t-statistic. Computing, we find x̄ = 33.24, s1 = 2.205, ȳ = 42.72, s2 = 13.883,
The degrees of freedom is calculated from

ν =

(
s21
n1

+ s22
n2

)2

1
n1−1

(
s21
n1

)2

+ 1
n2−1

(
s22
n2

)2 =

(
(2.205)2

21 + (13.883)2

19

)2

1
20

(
(2.205)2

21

)2

+ 1
18

(
(13.883)2

19

)2 = 18.82

which is rounded down to ν = 18. The two sided confidence interval for α = .05 significance depends on the
critical value t18,.025 = 2.101 are given by

θ̂ ± t18,.025

√
s21
n1

+
s22
n2

= (33.24− 42.72)± (2.101)

√
(2.205)2

21
+

(13.883)2

19
so with 95% confidence, −16.25 < µ1 − µ2 < −2.71.
(7.) Two observers measure cardiac output of 23 patients using Doppler endocardiography. Is there strong
evidence that the two observers are measuring differently? Choosing significance α = .05, and assuming that the
differences are normally distributed, test the null hypothesis that there is no difference in measurements between
the two observers.

Patient Obs A Obs B
1 4.9 5.9
2 5.1 5.9
3 5.2 6.2
4 6.4 4.2
5 5.9 6.0

6 6.4 5.6
7 6.6 5.8
8 5.8 8.4
9 6.4 7.7
10 6.8 7.7
11 7.5 6.7

12 7.6 7.3
13 7.9 7.6
14 8.0 8.3
15 8.4 8.2
16 8.8 8.1
17 8.5 10.0

18 8.2 11.6
19 9.1 10.7
20 9.8 10.1
21 9.8 11.2
22 11.3 9.0
23 11.3 10.0

Let X denote the cardiac output readings made by observer A and Y the readings from B. Since we wish to
eliminate the influence of patient differences on the readings, we use a paired test. We estimate µD = µX − µY
the mean of the differences. The differences yield the data dk = xk − yk. Thus d1 = 4.9 − 5.9 = −1.0,
d2 = 5.1−5.9 = −0.8, etc. Since the differences are assumed to be normally distributed, since we don’t know the
standard deviation of the differences, and since the sample is small n = 23 we use a t-test. The null hypothesis
is H0 : µD = µ0 = 0 and the alternative is Ha : µD 6= µ0. The appropriate statistic for ν = n− 1 = 22 degrees

of freedom is T =
D̄ − µ0

SD/
√
n

and the null hypothesis is rejected at α = .05 significance if t ≥ tν,α/2 = 2.074 or

t ≤ −tν,α/2. Computing, we find d̄ = −.283 and sD = 1.399 and

t =
d̄− µ0

sD/
√
n

=
−.283− 0
1.399/

√
23

= −.969

thus H0 is accepted: there is no strong evidence that the observers read differently.
(8.) A sample of 300 urban adult residents of Ohio revealed 63 who favored increasing the highway speed limit
from 55 to 65 mph, whereas a sample of 180 rural residents yielded 75 who favored the increase. Does this
data indicate the sentiment for increasing the speed limit is different for the two groups of residents? (a.)Test
H0 : p1 = p2 versus Ha : p1 6= p2 using α = .05, where p1 refers to the urban population. (b.)If the true
proportion favoring the increase are actually p1 = .20 (urban) and p2 =, 40 (rural), what is the probability that
H0 will be rejected using a level of .05 test with m = 300 and n = 180?

This is a test for difference of proportions. The proportion of urbanites who favor increasing the speed limit
is p̂1 = 63/300 = .21 and the proportion of rurals is p̂2 = 75/180 = .417. Since p̂1n1 = 63, q̂1n1 = 237,
p̂2n2 = 75 q̂2n2 = 105 all are at least 10, we may use the large sample z statistics for differences of proportion.
At the α = .05 significance, the null hypothesis is rejected if z ≥ zα/2 = 1.960 or z ≤ −1.960. If H0 holds, then
p = p1 = p2 so the best estimator for p is the pooled proportion

p̂ =
x1 + x2

n1 + n2
=

63 + 75
300 + 180

= .2875; q̂ = 1− p̂ = .7125.

The corresponding z-statistic is (assuming H0 : p1 = p2)

z =
p̂1 − p̂2√

p̂q̂ (1/n1 + 1/n2)
=

.21− .417√
(.2875)(.7125)(1/300 + 1/180)

= −4.843

which tells us to reject the null hypothesis: the proportions are different.



To compute the probability of Type II error, in case the true proportions are p′1 = .20 and p′2 = .40 with the
same n1 = 300 and n2 = 180, the difference p̂1 − p̂2 now has the standard deviation

σ̄ = σp̂1−p̂2 =
√
p′1q
′
1

n1
+
p′2q
′
2

n2
=

√
(.2)(.8)

300
+

(.4)(.6)
180

= .0432.

Then approximating p̂ ≈ p̄ = (n1p
′
1 + n2p

′
2)/(n1 + n2) = (300(.2) + 180(.4))/(300 + 180) = .275, q̂ ≈ q̄ =

1− p̄ = .725, standardizing so that E(p1 − p2) = p′1 − p′2 = .2− .4 = −.2.

β(p′1, p
′
2) = P

(
−zα

2

√
p̂q̂

(
1
n1

+
1
n2

)
< p1 − p2 < zα

2

√
p̂q̂

(
1
n1

+
1
n2

) ∣∣∣∣∣ p1 = p′1, p2 = p′2

)

≈Φ

(
zα

2

σ̄

√
p̄q̄

(
1
n1

+
1
n2

)
− p′1 − p′2

σ̄

)
− Φ

(
−
zα

2

σ̄

√
p̄q̄

(
1
n1

+
1
n2

)
− p′1 − p′2

σ̄

)

=Φ
(

1.960
.0432

√
(.275)(.725)

(
1

300 + 1
180

)
− .20− .40

.0432

)
− Φ

(
−1.960
.0432

√
(.275)(.725)

(
1

300 + 1
180

)
− .20− .40

.0432

)
=Φ(6.540)− Φ(2.720) = 1.0000− .9967 = .0033.

(9.) The sample standard deviation of sodium concentration in whole blood (mEq/L) for n1 = 20 marine eels
was found to be s1 = 40.5 whereas the sample standard deviation of n2 = 20 freshwater eels was s2 = 32.1.
Assuming normality of the two concentration distributions, construct a confidence interval for σ2

1/σ
2
2 at level .05

to see whether the data suggests any difference between the concentration variances for the two types of eels.
Let X and Y be the r.v.’s giving sodium concentrations of saltwater and freshwater eels, which we assume to

be approximately normal with means µ1, µ2 and standard deviations σ1, σ2 respectively. We consider the ratio

of sample variances from two random samples of size m = n = 20. The statistic is F =
S2

1σ
2
2

S2
2σ

2
2

satisfies an

F -distribution with ν1 = n1 − 1 = 19 and ν2 = n2 − 1 = 19 degrees of freedom. At the α = .05 significance,
we have confidence bounds F1−α/2,ν1,ν2 = 1/Fα/2,ν2,ν1 < F < Fα/2,ν1,ν2 . Finding an f -table for α = .025
( e.g. in text of Levine, Ramsey & Schmid) F (.025, 15, 19) = 2.62 and F (.025, 20, 19) = 2.51. Interpolating,
F (.025, 19, 19) = 2.49 so F (.975, 19, 19) = .401. Multiplying through σ2

1σ
−2
2 we have, we find

.639 =
(40.5)2

(2.49)(32.1)2
=

1
F (.025, 19, 19)

s21
s22

<
σ2

1

σ2
2

< F (.025, 19, 19)
s21
s22

=
(2.49)(40.5)2

(32.1)2
= 3.96.

Thus, since 1 is within the confidence interval, there is no strong evidence against σ1 = σ2.
(10.) A sample of 50 lenses used in eyeglasses yields a sample mean thickness of 3.05 mm and a sample
standard deviation of .34 mm. The desired true average thickness of such lenses is 3.20 mm. (a.)Does the data
strongly suggest that the average thickness of sauch lenses is other than what is desired? Test using α = .05.
(b.)Suppose the experimenter had believed before collecting the data that the value of σ was approximately .30.
If the experimeter wished the probability of Type II error to be .05 when µ = 3.00, was the sample size of 50
unnecessarily large?

The sample size n = 50 is large so that we may use z-test. Let X be the r.v. giving lens thicknesses. It has
a population mean µ and a population standard deviation σ. The null hypothesis is H0 : µ = µ0 = 3.20 and
the alternative Ha : µ 6= µ0. At α = .05 significance, the null hypothesis is rejected if z ≥ zα/2 = 1.960 or
z ≤ −zα/2. Thus

z =
x̄− µ0

s/
√
n

=
3.05− 3.20
.34/
√

50
= −3.120

thus we reject the null hypothesis: the thicknesses is other than desired.
The probability of Type II error is, by standardizing z, β(µ′) =

P

(
µ0 −

zα/2σ√
n

< z < µ0 +
zα/2σ√

n

∣∣∣∣µ = µ′
)

= P

(
Z ≤ zα/2 +

µ0 − µ′

σ/
√
n

)
− P

(
Z ≤ zα/2 +

µ0 − µ′

σ/
√
n

)
.

We cannot solve for n exactly. However, if µ′ = µ0 − d = 3.00 < µ0 then the first term, corresponding to the
upper cutoff value is very close to unity, therefore we may approximate it by 1. But then β = 1 − P (Z ≤ zβ)
implies
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zβ = −zα/2 +
µ0 − µ′

σ/
√
n

which can be solved for n to yield in case β = .05, σ = .30

n ≈
{
σ(zβ + zα/2)
µ0 − µ′

}2

=
{

(.30)(1.645 + 1.960)
.320− .300

}2

= 2924.11.

The sample size was not excessive. In fact, for n = 50, µ′ = .3, σ = .30, β = P (Z ≤ 2.431)−P (Z ≤ −1.489) =
.9925− .0680 = .9245 so the probability of Type II error is large.


