
Math 3080 § 1.
Treibergs

Final Exam Name:
May 6, 2010

(1.) In an experiment to see how hypertension is related to smoking habits, the following data was
taken on 180 individuals. Test the hypothesis that the presence or absence of hypertension and
the smoking habits are independent. Use a .05 level of significance. State the null hypothesis, the
test statistic, the rejection region, your computation and conclusion. [Hint: the sum = 14.46358.]

Nonsmokers Moderate Smokers Heavy Smokers Total

Hypertension 21 36 30 87

No Hypertension 48 26 19 93

Total 69 62 49 180

Let pij = P(Ai ∩ Bj) denote the proportion of the population in the hypertension i and
smoking j cell, pi = P(Ai) the probability of hypertension i and qj = P(Bj) the probability of
smoker j. The null and alternative hypotheses are

H0 : pij = piqj , for all i = 1, . . . , I and j = 1, . . . , J
H1 : pij 6= piqj , for some (i, j).

If T is the total number of observations, Ri are the row totals and Cj are the column totals then
the estimators for the proportions are p̂i = Ri/T and q̂j = Cj/T . Then eij denoting the expected
number in the (i, j) cell is given by eij = T p̂iq̂j = RiCj/T . The table of expected numbers in
each cell is

eij j = 1 j = 2 j=3

i = 1 e11 = R1C1
T = 87·62

180 = 33.350 e12 = R1C2
T = 87·49

180 = 29.914 e13 = R1C3
T = 87·69

180 = 23.683

i = 2 e21 = R2C1
T = 93·69

180 = 35.650 e22 = R2C2
T = 93·62

180 = 32.033 e23 = R2C3
T = 93·49

180 = 25.317

All expected cell counts exceed five, so we may use the χ2 test. Under H0, it is asymptotically
distributed as χ2 with (I − 1)(J − 1) degrees of freedom. The test statistic is

χ2 =
2∑

i=1

3∑
j=1

(yij − eij)2

eij
∼ χ2

(I−1)(J−1).

where yij is the observed cell count. The null hypothesis is rejected if χ2 > χ2
(I−1)(J−1)(α) =

χ2
2(.05) = 5.991. The hint tells us that

χ2 =
(21− 33.350)2

33.350
+ · · ·+ (19− 25.317)2

25.317
= 14.464.

Since this exceeds the critical value we rejectH0: the data strongly indicates that the hypertension
and smoking habits are not independent.
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(2.) Consider a one factor fixed effects ANOVA model with I = 3 and J = 2

Yij = µi + εij , for i = 1, 2, 3 and j = 1, 2 (1)

where µi are constants and the εij ∼ N(0, σ2) are IID normal random variables. Formulate the
problems as a multiple regression y = Xβ + ε. What are your n, p, the n× p design matrix

X =


x11 · · · xp1

...
. . .

...

x1n . . . xpn

 ,

and the n× 1 matrices y and ε? Using your X and y, find the estimator β̂. Show how this gives
the usual estimators for µ̂i.

There are 3 · 2 = 6 observations so n = 6. There are four parameteers to estimate: µ1, µ2, µ3

and σ, thus p = 3. There are two ways to solve the problem. The easiest way is to set

y =



y11

y12

y21

y22

y31

y32



, X =



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1



, β =


µ1

µ2

µ3

 , ε =



ε11

ε12

ε21

ε22

ε31

ε32


where we are just coding columns of X for the categorical variable i at three levels. Thus the
equation y = Xβ+ ε is exactly (1). The estimator for the regression is given by β̂ = (X ′X)−1X ′y
where X ′ is the transpose of X. Computing,

X ′X =


1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1





1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1



=


2 0 0

0 2 0

0 0 2

 , (X ′X)−1 =
1
2


1 0 0

0 1 0

0 0 1

 .
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Thus

β̂ = (X ′X)−1X ′y =
1
2


1 0 0

0 1 0

0 0 1




1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1





y11

y12

y21

y22

y31

y32



=


y11 + y12

2
y21 + y22

2
y31 + y32

2

 =


µ̂1

µ̂2

µ̂3

 ,

which are the usual estimators for the means µ̂i = ȳi·.
The other way follows how programs like R c© convert ANOVA to regression. One sets

y =



y11

y12

y21

y22

y31

y32



, X =



1 0 0

1 0 0

1 1 0

1 1 0

1 0 1

1 0 1



, β =


µ1

µ2 − µ1

µ3 − µ1

 , ε =



ε11

ε12

ε21

ε22

ε31

ε32


Thus the equation y = Xβ + ε is also equivalent to (1).

The estimator for the regression is given by β̂ = (X ′X)−1X ′y where X ′ is the transpose of X.
Computing,

X ′X =


1 1 1 1 1 1

0 0 1 1 0 0

0 0 0 0 1 1





1 0 0

1 0 0

1 1 0

1 1 0

1 0 1

1 0 1



=


6 2 2

2 2 0

2 0 2

 , (X ′X)−1 =
1
2


1 −1 −1

−1 2 1

−1 1 2

 .
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Thus

β̂ = (X ′X)−1X ′y =
1
2


1 −1 −1

−1 2 1

−1 1 2




1 1 1 1 1 1

0 0 1 1 0 0

0 0 0 0 1 1





y11

y12

y21

y22

y31

y32



=
1
2


1 −1 −1

−1 2 1

−1 1 2




y11 + y12 + y21 + y22 + y31 + y32

y21 + y22

y31 + y32



=
1
2


y11 + y12

−y11 − y12 + y21 + y22

−y11 − y12 + y31 + y32

 =


µ̂1

µ̂2 − µ̂1

µ̂3 − µ̂3

 ,

which implies that µ̂i = ȳi· which are the usual estimators for the means .

(3.) A simple regression study in R. A. Johnson’s, Probability and Statistics for Engineers reports
data on percent carbon content (X) and permeability index (Y ) for 22 sinter mixtures. Data pairs
and partial R c© output is given. If another reading were made at X∗ = 4, what do you predict
that the corresponding expected permeability index E(Y ∗) will be? Give an .05 prediction interval
when X∗ = 4. [Hint: x̄ = 4.655, ȳ = 19.182, Sxx = 6.675, Sxy = −43.318, Syy = 801.273.] State
the hypotheses for the model. Comment on how well they are satisfied.

X 4.4 5.5 4.2 3.0 4.5 4.9 4.6 5.0 4.7 5.1 4.4 4.1 4.9 4.7 5.0 4.6 3.6 4.9 5.1 4.8 5.2 5.2

Y 12 14 18 35 23 29 16 12 18 21 27 13 19 22 20 16 27 21 13 18 17 11

Call: f1 <- lm(formula = Y ~ X)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.693 9.365 5.199 4.35e-05

X -6.340 1.998 -3.173 0.00478

Residual standard error: 5.162 on 20 degrees of freedom

Multiple R-squared: 0.3349,Adjusted R-squared: 0.3016

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X 1 268.31 268.307 10.069 0.004781

Residuals 20 532.97 26.648
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Shapiro-Wilk normality test

data: resid(f1)

W = 0.978, p-value = 0.8828

If we wish to predict the expected y when x∗ = 4, we use the predicting line from the output

E(y∗) = β̂0 + β̂1x
∗ = 48.693 + (−6.340)(4.000) = 23.333.

The α = .05 level prediction interval, using the hints and output

E(y∗)± tn−2(α)s

√
1 +

1
n

+
(x∗ − x̄)2

Sxx
= 23.333± (2.086)(5.162)

√
1 +

1
22

+
(4− 4.655)2

6.675

= 23.333± 11.346 = (11.987, 34.679).

The hypotheses for the simple regression model is that the xi are assumed to be known constants
and Yi are random variables such that for all observations i = 1, . . . , n,

Yi = β0 + β1xi + εi,

where εi ∼ N(0, σ2) are IID normal random variables. Without the diagnostic plots, we can only
address whether the randomness in the data is in fact normal. The residuals ei = yi − β̂0 − β̂1xi,
which are linear combinations of the yi should also be normally distributed. Indeed, the Shapiro-
Wilk test for the normality of the residuals gives a P -value of .8828, so there is little evidence
that normality is violated.
(4.) Consider a one factor fixed effects ANOVA model

Yij = µ+ αi + εij , for i = 1, . . . , I and j = 1, . . . , J

where µ and αi are constants such that
∑

i αi = 0 and εij ∼ N(0, σ2) are IID normal random
variables. Find the expectation E(Z) of the random variable

Z =
I∑

i=1

J∑
j=1

(
Yij − Ȳi·

)2
The random variable is of course Z = SSE, the sum squared error. First, we square the

summands and replace SS by the computation formula

SSE =
I∑

i=1

J∑
j=1

Y 2
ij − J

I∑
i=1

Ȳ 2
i· .

The expected values of the sum of squares uses the formula for variance of a random variable
X, namely V(X) = E(X2)− E2(X). Thus, using independence,

E(Yij) = E (µ+ αi + εij) = µ+ αi,

E(Y 2
ij) = V(Yij) + E2(Yij) = V (µ+ αi + εij) + (µ+ αi)2 = σ2 + (µ+ αi)2,

Ȳi· =
1
J

J∑
j=1

Yij =
1
J

J∑
j=1

(µ+ αi + εij) = µ+ αi +
1
J

J∑
j=1

εij

E(Ȳi·) = E

µ+ αi +
1
J

J∑
j=1

εij

 = µ+ αi,

E(Ȳ 2
i· ) = V

µ+ αi +
1
J

J∑
j=1

εij

+ E2(Ȳi·) =
1
J
σ2 + (µ+ αi)2
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Putting these together we have the formula for the expectations of the sums of squares

E(SSE) = E

 I∑
i=1

J∑
j=1

Y 2
ij − J

I∑
i=1

Ȳ 2
i·


=

I∑
i=1

J∑
j=1

E
(
Ȳ 2

ij

)
− J

I∑
i=1

E
(
Ȳ 2

i·
)

=
I∑

i=1

J∑
j=1

{
σ2 + (µ+ αi)2

}
− J

I∑
i=1

{
1
J
σ2 + (µ+ αi)2

}
= I(J − 1)σ2.

(5.) The paper “. . . Protocols for Mobile Ad Hoc Networks,” Proceedings 2002 International
Conference on Wireless Networks, tried to predict network performance measured by y data
overhead (in kB) in terms of x1 speed of computers (m/s), x2 pause time at each link (s) and x3

the link change rate (100/s). Consider fitting the full quadratic model y = β0 + β1x1 + β2x2 +
β3x3 +β4x1x2 +β5x1x3 +β6x2x3 +β7x

2
1 +β8x

2
2 +β9x

2
3 + ε. Here is the data and R output of the

analysis of variance. Can you conclude that β2 < −2? Perform the appropriate hypothesis test.
If you were looking to take a step to improve this model, what variable(s) would you consider
dropping from the model? Which would you keep? Why?

Speed Pause LCR Overhead Speed Pause LCR Overhead Speed Pause LCR Overhead

5 10 9.43 428.90 10 50 8.31 498.77 30 30 16.70 506.23

5 20 8.32 443.68 20 10 26.31 452.24 30 40 13.26 516.27

5 30 7.37 452.38 20 20 19.01 475.97 30 50 11.11 508.18

5 40 6.74 461.24 20 30 14.73 499.67 40 10 37.82 444.41

5 50 6.06 475.07 20 40 12.12 501.48 40 20 24.14 490.58

10 10 16.46 446.06 20 50 10.28 519.20 40 30 17.70 511.35

10 20 13.28 465.89 30 10 33.01 445.45 40 40 14.06 523.12

10 30 11.16 477.07 30 20 22.13 489.02 40 50 11.69 523.36

10 40 9.51 488.73

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 435.99048 25.82529 16.882 3.62e-11

X1 0.56556 2.35353 0.240 0.81335

X2 -2.15504 1.29222 -1.668 0.11611

X3 -2.24927 3.26020 -0.690 0.50078

X1X2 -0.04820 0.03145 -1.533 0.14616

X1X3 -0.14612 0.08428 -1.734 0.10347

X2X3 0.36358 0.09438 3.853 0.00157

X1X1 0.05117 0.02558 2.001 0.06386

X2X2 0.02362 0.01292 1.828 0.08754

X3X3 0.07581 0.09187 0.825 0.42222

Residual standard error: 4.205 on 15 degrees of freedom

Multiple R-squared: 0.9868,Adjusted R-squared: 0.9789

F-statistic: 124.8 on 9 and 15 DF, p-value: 1.863e-12

Analysis of Variance Table. Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 5571.2 5571.2 315.0457 1.766e-11

X2 1 10973.9 10973.9 620.5618 1.283e-13

X3 1 558.8 558.8 31.5973 4.870e-05
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X1X2 1 0.1 0.1 0.0066 0.9362

X1X3 1 2073.4 2073.4 117.2461 1.737e-08

X2X3 1 585.4 585.4 33.1010 3.814e-05

X1X1 1 32.0 32.0 1.8106 0.1984

X2X2 1 52.3 52.3 2.9577 0.1060

X3X3 1 12.0 12.0 0.6809 0.4222

Residuals 15 265.3 17.7

We use a one sided t-test to test

H0 : β2 ≥ 0 vs.
H1 : β2 < 0.

There are n = 25 observations and the number of β’s to fit is p = 10. The test statistic is
distributed as t with n− p degrees of freedom.

T =
β2 − 0
s(β2)

∼ tn−p.

The null hypothesis is rejected if T < −tn−p(α) = −t25−10(α). However, this statistic is already
computed in the output to be T = −1.668 but the P -values there are two sided so don’t apply to
this test. We reject the null hypothesis: there is mild evidence that β2 < 0 at the α = .10 level
since t15(.10) = 1.341 but it is not significant at the α = .05 level since t15(.05) = 1.753.

In deciding what variables to remove in the next regression run, we look at the interactions of
higher order term that are plausibly zero, namely the x2

3 and x1x2 terms, whose coefficients have
the highest p-values for being zero. I would keep x1, x2, x3, x2x3, and x2

1 because x2x3 and x2
1

have much lower p-values, and one keeps first order terms of any significant interacting variables.
The x1x3 has large p value too, but it is significant in the ANOVA table so it can be kept in the
model another step.

(6.) Consider a two factor fixed effects ANOVA model

yijk = µij + εijk, for i = 1, . . . , I, j = 1, . . . , J and k = 1, . . . ,K,

where µij is a constant and εijk ∼ N(0, σ2) is an IID normal random variable. µ̂ij is chosen to be
least squares estimator, which means that it minimizes a certain sum of squares. Give a formula
for this sum of squares. Minimize your sum of squares to deduce the formula for µ̂ij.

The least squares estimators are chosen to minimize the least square errors. For a given choice
of esimators µ̂ij , the corresponding SSE is

Q(µ̂) =
I∑

i=1

J∑
j=1

K∑
k=1

(µ̂ij − yijk)2 ,

where µ̂ = (. . . , µ̂ij , . . .) is the I ×J matrix of µ̂ij ’s. There are two ways to find µ̂ that minimizes
Q: by setting the derivatives equal to zero or by “completing the square.” Using the first way,
let us fix one of the (i0, j0) with 1 ≤ i0 ≤ I and 1 ≤ j0 ≤ J and take the derivative with respect
to µ̂i0j0 . Splitting the sum into terms that involve µ̂i0j0 and those that don’t and differentiating,

∂Q
∂µ̂i0j0

=
∂

∂µ̂i0j0

 K∑
k=1

(µ̂i0j0 − yi0j0k)2 +
∑

(i,j)6=(i0,j0)

K∑
k=1

(µ̂ij − yijk)2


= 2
K∑

k=1

(µ̂i0j0 − yi0j0k) + 0 = 2Kµ̂i0j0 − 2
K∑

k=1

yi0j0k.
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These expressions are all zero if and only if for each (i0, j0),

µ̂i0j0 =
1
K

K∑
k=1

yi0j0k = ȳi0j0• (2)

The second way is to split the sum of squares

Q =
I∑

i=1

J∑
j=1

K∑
k=1

(µ̂ij − ȳij· + ȳij· − yijk)2

=
I∑

i=1

J∑
j=1

K∑
k=1

(µ̂ij − ȳij·)
2 + 2

I∑
i=1

J∑
j=1

K∑
k=1

(µ̂ij − ȳij·) (ȳij· − yijk) +
I∑

i=1

J∑
j=1

K∑
k=1

(ȳij· − yijk)2

=
I∑

i=1

J∑
j=1

K∑
k=1

(µ̂ij − ȳij·)
2 +

I∑
i=1

J∑
j=1

K∑
k=1

(ȳij· − yijk)2

which is minimized when the first sum is zero by choosing (2) for each (i0, j0). The cross terms
vanish because

I∑
i=1

J∑
j=1

K∑
k=1

(µ̂ij − ȳij·) (ȳij· − yijk) =
I∑

i=1

J∑
j=1

(µ̂ij − ȳij·)
K∑

k=1

(ȳij· − yijk)

=
I∑

i=1

J∑
j=1

(µ̂ij − ȳij·) (Kȳij· −Kȳij·) = 0.

(7.) In the study “Vitamin C Retention in Reconstituted Frozen Orange Juice,” (VPI Department
of Human Nutrition and Foods, 1972), three brands (R =Richfood, S =Sealed-Sweet, M =Minute
Maid) were measured at three different time periods (0,3,7 days) between when OJ concentrate was
blended and when it was tested. Response is mg/l ascorbic acid. Here is the data and partial SAS
output. State the assumptions of the model. Test for interactions of the main effects. State the null
hypotheses, test statistic, rejection region and your conclusion. Compute Tukey’s HSDtime using
α = .05. Using Tukey’s HSD, determine which pairs of time means are significantly different.

Time = 0 days 3 days 7 days

Brand ---------------------- ---------------------- ----------------------

R 52.6 54.2 49.8 46.5 49.4 49.2 42.8 53.2 42.7 48.8 40.4 47.6

S 56.0 48.0 49.6 48.4 48.8 44.0 44.0 42.4 49.2 44.0 42.0 43.2

M 52.5 52.0 51.8 53.6 48.0 47.0 48.2 49.6 48.5 43.3 45.2 47.6

The GLM Procedure

Dependent Variable: Acid Ascorbic-Acid

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 8 277.2850000 34.6606250 3.67 0.0051

Error 27 254.7025000 9.4334259

Corrected Total 35 531.9875000

R-Square Coeff Var Root MSE acid Mean

0.521225 6.413200 3.071388 47.89167
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Source DF SS Mean Square F Value Pr > F

Brand 2 32.7516667 16.3758333 1.74 0.1953

Time 2 227.2116667 113.6058333 12.04 0.0002

Brand*Time 4 17.3216667 4.3304167 0.46 0.7650

Level of -------------Acid------------

Brand N Mean Std Dev

M 12 48.9416667 3.09470467

R 12 48.1000000 4.35994162

S 12 46.6333333 4.09863244

Level of -------------Acid------------

Time N Mean Std Dev

0 12 51.2500000 2.81408794

3 12 47.2166667 3.27131704

7 12 45.2083333 3.01434701

In this study, both factors have I = J = 3 levels and there are K = 4 replications. We are
assuming a two factor fixed effects ANOVA with interactions. Thus we assume that the sample
consists of random variables of the form

Yijk = µ+ αi + βj + (αβ)ij + εijk for all i = 1, . . . , I, j = 1, . . . , J and k = 1, . . . ,K,

where µ, αi, βj and (αβ)ij are constants such that
∑

i αi =
∑

j βj = 0,
∑

i(αβ)ij = 0 for all
j,
∑

j(αβ)ij = 0 for all i and εijk ∼ N(0, σ2) are independent, identically distributed normal
random variables.

We test for the presence of interactions. The null and alternative hypotheses are

H0 : (αβ)ij = 0 for all i = 1, . . . , I and j = 1, . . . , J .
vs. H1 : (αβ)ij 6= 0 for some (i, j).

The test statistic is FAB = MSAB/MSE ∼ f(I−1)(J−1),IJ(K−1) which is distributed as an f
variable with ν1 = (I − 1)(J − 1) and ν2 = IJ(K − 1) degrees of freedom. The null hypothesis
is rejected at the α = .05 level if FAB > f(I−1)(J−1),IJ(K−1)(α) = f4,27(.05) = 2.73. In this case,
FAB = 0.46 with p-value of .7650 so that H0 is not rejected: the interaction terms are plausibly
zero.

On the other hand, the p-value for the time factor is .0002 which is highly significant: there
is statistical evidence that the βj are not zero. We compute Tukey’s honest significant difference.
n = J = 3, the number of means compared and ν = IJ(K − 1) = 27 is the degrees of freedom in
the MSE term. As Ȳ·j· is an average over IK terms,

HSDtime = q(α;n, ν)

√
MSE

IK
= q(.05, 3, 27)

√
9.4334259

12
= 3.51

√
9.4334259

12
= 3.11.

Note that the Studentized Range is not given for (n, ν) = (3, 27) so we interpolated the table:
since 27 = .5(24 + 30) we use the straight line approximation q(.05, 3, 27) ≈ .5(q(.05, 3, 24) +
q(.05, 3, 30)) = .5(3.53 + 3.49) = 3.51. Or use the conservative value 3.53. Computing the
differences we find

Ȳ·1· − Ȳ·2· = 51.250− 47.217 = 4.033,
Ȳ·1· − Ȳ·3· = 51.250− 45.208 = 6.042,
Ȳ·2· − Ȳ·3· = 47.217− 45.208 = 2.009

9



The first two exceed HSD and are significant, the third does not. The Tukey Bar pattern is thus

51.250 47.217 45.208.

The acid at time 0 days is significantly greater than the acid at 3 days or 7 days. However the
acid levels at 3 days and 7 days were not significantly different.

(8.) The same data from the study “Vitamin C Retention in Reconstituted Frozen Orange Juice,”
as in Problem 7 was used to produce six diagnostic plots in R c©. For each of the six plots shown,
briefly explain what information about the data, the analysis or the appropriateness of the model
can be concluded from that plot.
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Plot 1. The boxplots indicate the median and spread of OJ vitamin C (Acid) for different
brands. Here, the inter-quartile differences (box heights) are nearly equal indicating that the
spread of Acid is roughly uniform with respect to Brand, which upholds the hypothesis that
spread be independent of the variables. The median Acid for Brand S is a bit smaller than the
others.

Plot 2. The interaction plots show how the mean Acid changes in time for the different Brands.
Here, as all three are decreasing, the lines are roughly but not perfectly parallel, indicating that
the interaction term is small but nonzero.

Plot 3. The scatter plots indicate the spread of Acid for different times. Here the spreads are
nearly equal indicating that the spread of Acid is roughly uniform with respect to Time, which
upholds the hypothesis that spread be independent of the variables. The Acid levels drop as time
increases.

Plot 4. Here, the Ŷ v. Y plot shows uniform horizontal spread independent of Ŷ , indicating
that the variance does not depend on the predicted value, which is assumed by the model. On the
other hand, the points are not near the Ŷ = Y line, indicating that the model does not predict
the outcome well. This plot is a way check model effectiveness in making predictions.

Plot 5. The plot of standardized residuals v. fitted values is an important one to see if model
hypotheses are satisfied. The residuals and fitted values are independent so that the scatter
should be uniform (“tubular”) over the range of predicted values. In this case, the vertical spread
is uniform as expected from our model assumptions. The spread has been standardized (residuals
have been divided by the standard error) which gives N(0, 1) variable if the assumptions are met.
That means that about 95% of the residuals should be within ±2 standard deviations of zero.
With 36 data points, seeing the one point outside the ±2 dotted lines does not upset us.

Plot 6. The normal QQ-plot of standardized residuals tells about the distribution of residuals.
It would look the same without standardizing. Under the model hypotheses, the errors, thus also
the residuals should distribute as a normal variable. The observed quantiles are plotted against
the theoretically normal quantiles. Failure of normality will look like bowing (skewed data) or
“N/S” shaped (kurtotic data). Here the points align nicely with the 45◦ line, indicating normality
hypotheses not being violated.

(9.) The study “Split Plot Designs...for Mixture Experiments with Process Variables,” (Techno-
metrics, 2002) considered a 23 with four replicates design to study how the factors A proportion
of plasticizer, B rate of extrusion and C drying temperature affect the thickness (in mils) in the
manufacture of vinyl seat covers. Here is the printout of the data and the contrasts. Show by
doing the computation that the contrast Lac = 29 is correct. State the hypothesis of your model.
Construct the ANOVA table.

[
Hint:

∑2
i=1

∑2
j=1

∑2
k=1

∑4
`=1 y

2
ijk` = 1655.

]
Thickness Total Contrast

1 7 5 6 7 25 221

a 6 5 5 5 21 27

b 8 8 4 6 26 13

ab 9 5 6 9 29 11

c 7 6 5 5 23 19

ac 7 7 11 10 35 29

bc 6 4 5 8 23 -5

abc 8 11 11 9 39 -3

There are n = 23 · 4 = 32 observations. Their sum is L1 = (1) + (a) + · · ·+ (abc) = 221. E.g.,
(1) = 7 + 5 + 6 + 7 is the total of replications under the experimental condition “1” (all factors
at low level). The contrast Lac is the inner product with the signs of the experimental condition
eac = (1,−1,+1,−1,−1, 1,−1, 1), or

Lac = (1)− (a) + (b)− (ab)− (c) + (ac)− (bc) + (abc) = 25−21 + 26−29−23 + 35−23 + 39 = 29.
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By the computation formula,

SST =
2∑

i=1

2∑
j=1

2∑
k=1

4∑
`=1

y2
ijk` −

1
n

 2∑
i=1

2∑
j=1

2∑
k=1

4∑
`=1

yijk`

2

= 1655− 2212

32
= 128.719.

The problem is shorter or longer, depending on what you choose the model to be. The longer
computation results from the model

Yijk = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijk`,

for all i, j, k ∈ {1, 2} and ` = 1, . . . , 4 where µ, αi, βj , γk, (αβ)ij , (αγ)ik, (βγ)jk, (αβγ)ijk are
constants such that

∑
i αi =

∑
j βj =

∑
k γk = 0,

∑
k(αβγ)ijk =

∑
k(βγ)jk =

∑
k(αγ)ik = 0

for all i, j,
∑

j(αβγ)ijk =
∑

j(βγ)jk =
∑

j(αβ)ij = 0 for all i, k,
∑

i(αβγ)ijk =
∑

i(αγ)ik =∑
i(αβ)ij = 0 for all j, k and εijk` ∼ N(0, σ2) are independent, identically distributed normal

random variables. In the 23 design case, the sum squares are given by the formula

SSfactor =
L2

factor

23n

E.g., SSA = L2
a/32 = 272/32 = 22.781. Each of the seven SS have one degree of freedom. Then

subtracting gives the residual sum of squares

SSE = SST − SSA− SSB − SSAB − SSC − SSAC − SSBC − SSABC
= 128.719− 22.781− . . .− .281 = 58.250

with n−1−7 = 24 degrees of freedom. MSE = SSE/DFE. Then the Ffactor = MSfactor/MSE.
Here is the ANOVA table.

SOURCE DF SS MS F

a 1 22.781 22.781 9.386

b 1 5.281 5.281 2.176

ab 1 3.781 3.781 1.558

c 1 11.281 11.281 4.648

ac 1 26.281 26.281 10.828

bc 1 .781 .781 .322

abc 1 .281 .281 .116

Error 24 58.250 2.427

Total 31 128.719

The shorter answer is that you choose the additive model

Yijk = µ+ αi + βj + γk + εijk`,
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for all i, j, k ∈ {1, 2} and ` = 1, . . . , 4 where µ, αi, βj , γk are constants such that
∑

i αi =
∑

j βj =∑
k γk = 0 and εijk` ∼ N(0, σ2) are independent, identically distributed normal random variables.

Then subtracting gives the residual sum of squares

SSE = SST − SSA− SSB − SSC = 128.219− 22.781− 5.281− 11.281 = 89.375

with n− 1− 3 = 28 degrees of freedom. Here is the shorter ANOVA table.

SOURCE DF SS MS F

a 1 22.781 22.781 7.137

b 1 5.281 5.281 1.659

c 1 11.281 11.281 3.534

Error 28 89.375 3.192

Total 31 128.719

Since the critical f1,24(.05) = 4.26, the AC term is significant in the long model. The A
and C are significant too, but don’t have simple interpretation due to the presence of the AC
interaction. The critical f1,28(.05) = 4.20 so that this time A is significant but C is not for the
short model. But this is under the assumption that the interactions vanish.
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