Math 3080 § 1.	Spectrophotometer Example:	Name: Erample
Treibergs	One-Factor Random Effects ANOVA	Jan. 22, 2014

Today's example was motivated from problem 13.14.9 of Walpole, Myers, Myers and Ye, *Probability and Statistics for Engineers and Scientists, 7th ed.*, Prentice Hall 2002. It is an example of a one-factor random effects model.

For a single factor, the ANOVA is run the same way with the same f-statistic and rejection region. However, in the Random Effects model, the factors (laboratories) are assumed to be a random sample from all laboratories, and the null hypothesis is

$$\mathcal{H}_0: \sigma_A^2 = 0$$

In this case we are unable to reject the null hypothesis, and conclude that there is no significant evidence that the laboratory variance is nonzero.

In case the treatment variance component is significant, we can estimate it from the mean squares of the ANOVA table. The estimators follow from the expected mean squares in the balanced random effects model. Since

$$E(MSE) = \sigma^2$$
$$E(MSTr) = \sigma^2 + J\sigma_A^2$$

it follows that estimators are

$$\widehat{\sigma^2} = MSE,$$

$$\widehat{\sigma_A^2} = \frac{MSTr - MSE}{J}.$$

The diagnostic plots show that it is plausible that assumptions hold. The plot of residuals vs. fitted values shows that the variances for the three treatments are somewhat different, although not significantly as the analysis shows. The QQ-normal plot of the standardized residuals follows the 45° line nicely indicating that there is no evidence that normality assumption is violated.

Data Set Used in this Analysis :

```
# Math 3082
                   Spectrophotometer Data
                                              1 - 19 - 2014
# Data from Walpole, Myers & Myers,
# Probability and Statistics for Engineers and Scientists, 6th ed, Prentice
# Hall, Upper Saddle River NJ, 1998. Testing for HIV antibodies, a
# spectrophotometer measured the optical density, absorbance of light at a
# particular wavelength, of blood samples. The blood sample is positive if
                                                                            it
# exceeds a certain cutoff value that is determined by the control samples for
# that run. Researchers are interested in in comparing the laboratory
# variability for the positive control values. The data represent positive
 control values for ten different runs at four randomly selected laboratories.
Laboratory Density
1 8.88000000e-001
1 9.83000000e-001
1 1.04700000e+000
1 1.08700000e+000
1 1.12500000e+000
```

1 9.97000000e-001 1 1.02500000e+000 1 9.69000000e-001 1 8.98000000e-001 1 1.01800000e+000 2 1.06500000e+000 2 1.22600000e+000 2 1.33200000e+000 2 9.58000000e-001 2 8.16000000e-001 2 1.01500000e+000 2 1.07100000e+000 2 9.05000000e-001 2 1.14000000e+000 2 1.05100000e+000 3 1.32500000e+000 3 1.06900000e+000 3 1.21900000e+000 3 9.58000000e-001 3 8.19000000e-001 3 1.14000000e+000 3 1.22200000e+000 3 9.95000000e-001 3 9.28000000e-001 3 1.32200000e+000 4 1.23200000e+000 4 1.12700000e+000 4 1.05100000e+000 4 8.97000000e-001 4 1.22200000e+000 4 1.12500000e+000 4 9.90000000e-001 4 8.75000000e-001 4 9.30000000e-001 4 7.75000000e-001

R Session:

R version 2.14.0 (2011-10-31) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i386-apple-darwin9.8.0/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

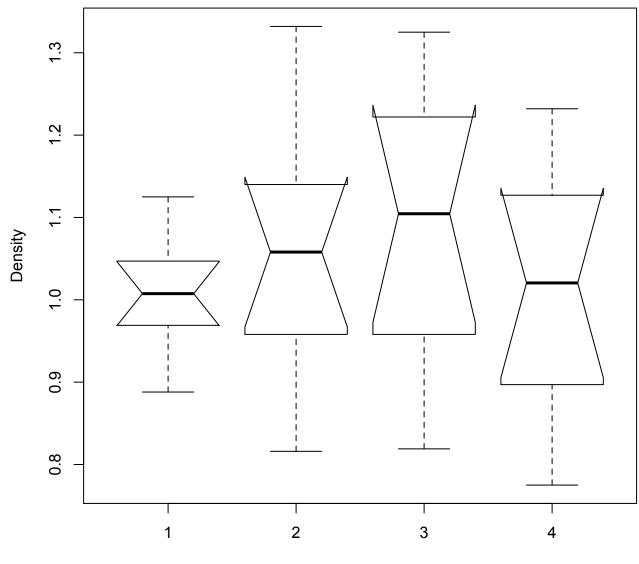
R is a collaborative project with many contributors. Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

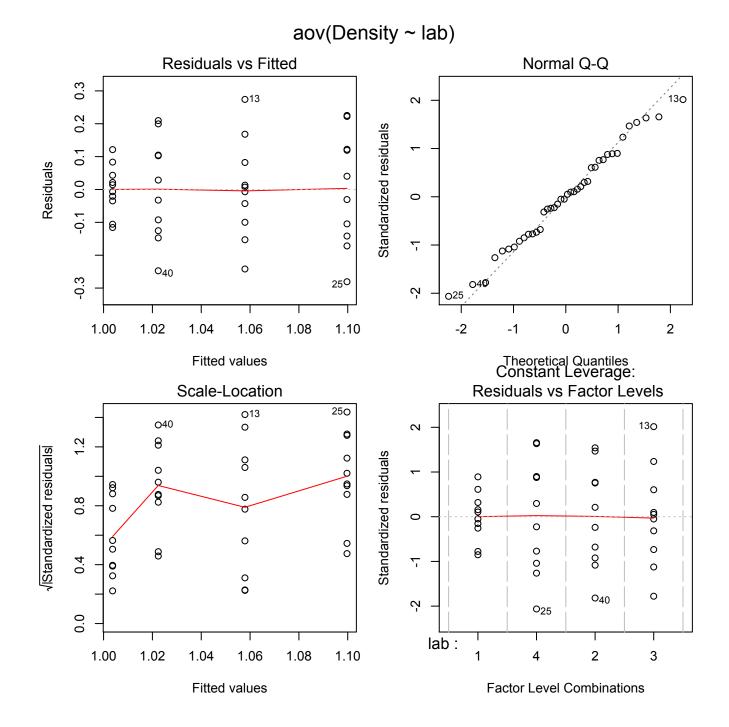
Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.

[R.app GUI 1.42 (5933) i386-apple-darwin9.8.0]

[Workspace restored from /home/1004/ma/treibergs/.RData] [History restored from /home/1004/ma/treibergs/.Rhistory]


> tt=read.	table	e("M3082	DataSpectrophotometer.txt",	header=T)
> tt				
Laborat	ory I	Density		
1	1	0.888		
2	1	0.983		
3	1	1.047		
4	1	1.087		
5	1	1.125		
6	1	0.997		
7	1	1.025		
8	1	0.969		
9	1	0.898		
10	1	1.018		
11	2	1.065		
12	2	1.226		
13	2	1.332		
14	2	0.958		
15	2	0.816		
16	2	1.015		
17	2	1.071		
18	2	0.905		
19	2	1.140		
20	2	1.051		
21	3	1.325		
22	3	1.069		
23	3	1.219		
24	3	0.958		
25	3	0.819		
26	3	1.140		
27	3	1.222		
28	3	0.995		
29	3	0.928		
30	3	1.322		
31	4	1.232		
32	4	1.127		
33	4	1.051		
34	4	0.897		
35	4	1.222		
36	4	1.125		
37	4	0.990		

38


4 0.875

```
39
          0.930
         4
40
            0.775
         4
> attach(tt)
> lab = ordered(Laboratory)
> #
> boxplot(Density~lab, notch=T,xlab="Laboratory",ylab="Density",
 main="Spectrophotometer Data")
Warning message:
In bxp(list(stats = c(0.888, 0.969, 1.0075, 1.047, 1.125, 0.816, :
 some notches went outside hinges ('box'): maybe set notch=FALSE
> tapply(Density,lab,summary)
$'1'
  Min. 1st Qu. Median Mean 3rd Qu.
                                 Max.
0.8880 0.9725 1.0080 1.0040 1.0420 1.1250
$'2'
  Min. 1st Qu. Median Mean 3rd Qu.
                                 Max.
0.8160 0.9722 1.0580 1.0580 1.1230 1.3320
$'3'
  Min. 1st Qu. Median Mean 3rd Qu.
                                 Max.
0.8190 0.9672 1.1040 1.1000 1.2210 1.3250
$'4'
  Min. 1st Qu. Median Mean 3rd Qu.
                                 Max.
0.7750 0.9052 1.0200 1.0220 1.1260 1.2320
> #
>
> t1=aov(Density~lab)
> summary(t1)
         Df Sum Sq Mean Sq F value Pr(>F)
lab
         3 0.0537 0.01791 0.871 0.465
Residuals 36 0.7401 0.02056
>
>
> opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),
  mar = c(4.1, 4.1, 2.1, 1.1))
> plot(t1)
> par(opar)
> >
```


Laboratory

