
Math 3080 § 1.
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Second Midterm Exam Name: Solutions
March 19, 2014

(1.) The article “Withdrawl Strength of Threaded Nails,” in Journal of Structural Engineering,
2001, describes an experiment to relate the diameter of a threaded nail (x in mm) to its ultimate
withdrawal strength from Douglas Fir lumber (y in N/mm). Obtain the equation of the least-
squares line. What proportion of observed variation in withdrawal strength can be attributed to
the linear relationship between withdrawal strength and diameter? Values of summary quantities
are

> c( length(x), sum(x), sum(y), sum(x^2), sum(x*y), sum(y^2) )

[1] 10 37.3 659.9 145.6 2533.0 44906.0

We compute intermediate quantities

x =
1

n

∑
xi =

37.3

10
= 3.73, y =

1

n

∑
yi =

659.9

10
= 65.99,

Sxx =
∑

x2i −
1

10

(∑
xi

)2
= 145.6− 1

10
(145.6)

2
= 6.471;

Sxy =
∑

xiyi −
1

10

(∑
xi

)(∑
yi

)
= 2533− 1

10
(37.3) (659.9) = 71.573;

Syy =
∑

x2i −
1

10

(∑
xi

)2
= 44906− 1

10
(659.9)

2
= 1359.199

Thus the least-squares line is y = β̂0 + β̂1x where

β̂1 =
Sxy

Sxx
=

71.573

6.471
= 11.06058 β̂0 = y − β̂1x = 65.99− (11.06058)(3.73) = 24.73404

The proportion on of observed variation in withdrawal strength attributed to the linear relation-
ship between withdrawal strength and diameter is R2, which may be obtained by

R2 =
S2
xy

SxxSyy
=

(71.573)2

(6.471)(1359.199)
= 0.5824303

(2.) Given n data points (xi, yi), suppose that we try to fit a linear equation y = β0 + β1x. For
the simple regression model, what are the assumptions on the data {(xi, yi)}? Find the variance
V (Yi) for the y-coordinate of the ith observation. Explain. What is the fitted value Ŷi? Show

that it may be expressed as a linear combination

n∑
j=1

cjYj, where the cj’s don’t depend on the Yi’s.

Starting from the regression model, derive the expected value E

(
n∑
i=1

Y 2
i

)
.

For the simple regression model, we assume that xi’s are fixed and that

yi = β0 + β1xi + εi, where εi ∼ N(0, σ2) are I.I.D.

Hence, the y-coordinate of random observation at xi has

V (Yi) = V (β0 + β1xi + εi) = V (εi) = σ2
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because Yi and εi differ by a constant so have the same variance. The fitted value is the point
predicted by the regression line, namely

Ŷi = β̂0 + β̂1xi = Y − β̂1x+ β̂1xi = Y + β̂1(xi − x)

=

n∑
j=1

Yj
n

+ (xi − x)
Sxy
Sxx

=

n∑
j=1

Yj
n

+
(xi − x)

Sxx

n∑
j=1

(xj − x)(Yj − Y )

=

n∑
j=1

{
1

n
+

(xi − x)(xj − x)

Sxx

}
Yj

because
∑n
j=1(xj − x)Y = 0. Now, use the fact that for any random variable, E(Z2) = V (Z) +

E(Z)2 so that

E

(
n∑
i=1

Y 2
i

)
=

n∑
i=1

E
(
Y 2
i

)
=

n∑
i=1

{
V (Yi) + E (Yi)

2
}

=

n∑
i=1

{
σ2 + (β0 + β1xi)

2
}

= nσ2 +

n∑
i=1

(β0 + β1xi)
2
.

(3.) A 1984 study in Journal of Retailing looked at variables that contribute to productivity in the
retail grocery trade. A measure of productivity is “value added per work hour,” (in $) which is
the surplus money generated by the business available to pay for labor, furniture and fixtures, and
equipment. How does value added depend on store size (in 1000 ft2)? State the model and the
assumptions on the data. Is there strong evidence that β2 < −.006? State the null and alternative
hypotheses. State the test statistic and rejection region. Carry out the test at significance level
.05.
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> ValAdd = c( 4.08, 3.40, 3.51, 3.09, 2.92, 1.94, 4.11, 3.16, 3.75, 3.60 )

> Size = c( 21.0, 12.0, 25.2, 10.4, 30.9, 6.8, 19.6, 14.5, 25.0, 19.1 )

> m1=lm(ValAdd ~ Size + I(Size^2))

> plot(ValAdd~Size, pch=19, main="Value Added vs. Store Size")

> lines(seq(0,32,.3),predict(m1,data.frame(Size=seq(0,32,.3))))

> summary(m1); anova(m1)

lm(formula = ValAdd ~ Size + I(Size^2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) -0.159356 0.500580 -0.318 0.759512

Size 0.391931 0.058006 6.757 0.000263

I(Size^2) -0.009495 0.001535 -6.188 0.000451

Residual standard error: 0.2503 on 7 degrees of freedom

Multiple R-squared: 0.8794,Adjusted R-squared: 0.845

F-statistic: 25.53 on 2 and 7 DF, p-value: 0.0006085

Analysis of Variance Table

Response: ValAdd

Df Sum Sq Mean Sq F value Pr(>F)

Size 1 0.80032 0.80032 12.774 0.0090466

I(Size^2) 1 2.39858 2.39858 38.286 0.0004507

Residuals 7 0.43855 0.06265}

The quadratic regression model assumes that sizes xi are fixed and the value added yi satisfies

yi = β0 + β1xi + β2x
2
i + εi, where εi are I.I.D. N(0, σ2)

for some constants βi. This is a quadratic regression so the number of variables is k = 2.
We test the hypotheses

H0 : β2 = β20 = −.006 vs. Ha : β2 < β20 = −.006.

The test statistic is

t =
β̂2 − β20
s
β̂2

which is a random variable distributed according to the t-distribution with ν = n− k− 1 degrees
of freedom. The null hypothesis is rejected if t ≤ −tα,n−k−1.

When α = 0.05 and the number of observations is n = 10, by reading the summary table, and
looking at Table A5 from the text,

t =
β̂2 − β20
s
β̂2

=
−.009495− (−.006)

.001535
= −2.276873 < −tα,n−k−1 = −t.05,7 = 1.895.

Thus we reject the null hypothesis: there is significant evidence that β2 < −.006.

(4.) To develop a model to predict miles per gallon based on highway speed, a test car was driven
during two trial periods at speeds ranging from 10 to 75 miles per hour. Consider two models to
explain the data: first, a quadratic regression yi = β0 + β1xi + β2x

2
i (the solid lines), and second

a transformed version, log(yi) = β0 + β1 xi + β2 x
2
i (the dashed lines). R c© was used to generate

tables and plots. What is the equation of the dashed line (for Model 2) in the first panel scatterplot
in (MPH,MPG) coordinates? Discuss the two models with regard to quality of fit and whether
the model assumptions are satisfied. Compare at least five features in the tables and plots. Which
is the better model?

MPH 10.0 10.0 15.0 15.0 20.0 20.0 25.0 25.0 30.0 30.0 35.0 35.0 40.0 40.0

MPG 4.8 5.7 8.6 7.3 9.8 11.2 13.7 12.4 18.2 16.8 19.9 19.0 22.4 23.5

MPH 45.0 45.0 50.0 50.0 55.0 55.0 60.0 60.0 65.0 65.0 70.0 70.0 75.0 75.0

MPG 21.3 22.0 20.5 19.7 18.6 19.3 14.4 13.7 12.1 13.0 10.1 9.4 8.4 7.6

lm(formula = MPG ~ MPH + I(MPH^2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.5555495 1.4241091 -5.305 1.69e-05

MPH 1.2716937 0.0757321 16.792 3.99e-15
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I(MPH^2) -0.0145014 0.0008719 -16.633 4.97e-15

Residual standard error: 1.663 on 25 degrees of freedom

Multiple R-squared: 0.9188,Adjusted R-squared: 0.9123

F-statistic: 141.5 on 2 and 25 DF, p-value: 2.338e-14

Analysis of Variance Table

Response: MPG

Df Sum Sq Mean Sq F value Pr(>F)

MPH 1 17.37 17.37 6.2775 0.01911

I(MPH^2) 1 765.46 765.46 276.6417 4.973e-15

Residuals 25 69.17 2.77

========================================================

lm(formula = log(MPG) ~ MPH + I(MPH^2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.664e-01 6.768e-02 11.32 2.47e-11

MPH 1.030e-01 3.599e-03 28.62 < 2e-16

I(MPH^2) -1.158e-03 4.144e-05 -27.96 < 2e-16

Residual standard error: 0.07906 on 25 degrees of freedom

Multiple R-squared: 0.9704,Adjusted R-squared: 0.968

F-statistic: 409.7 on 2 and 25 DF, p-value: < 2.2e-16

Analysis of Variance Table

Response: log(MPG)

Df Sum Sq Mean Sq F value Pr(>F)

MPH 1 0.2362 0.2362 37.792 1.992e-06

I(MPH^2) 1 4.8850 4.8850 781.587 < 2.2e-16

Residuals 25 0.1563 0.0063
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The equation of the dashed line in the first figure is found from the second model.

y = exp
(
β̂0 + β̂0 x+ β̂0 x

2+
)

= exp
(
0.774 + 0.1030x− .001158x2

)
The second model seems to perform better. First of the two intrinsically linear versions, the

coefficient of multiple determination in the first model R2 = 0.9188 is smaller than R2 = 0.9704
for the second model. Thus the second model accounts for a larger percentage of variation
relative to the intrinsic model. Because both models have two independent variables, we do not
need to compare adjusted R2 which accounts for different numbers of variables. Adjusted R2

also shows that the second model accounts for more variability. However, the second model has
dimensions log y, and the first y, this comparison is limited. Second, looking at the scatterplots
Panels 1 and 5, both show downward arc indicating that the quadratic term is useful. Indeed the
quadratic coefficients are significantly nonzero in the tables. The dashed fitted line of the second
model seems to capture the points slightly better than the solid line of the first model. Third,
comparing the observed values vs. the fitted values, Panels 2 and 6, Model 1 seems to have a
lot more upward bowing in the points than Model 2, indicating that the first model still needs
some nonlinear adjustment, whereas the second has points lining up beautifully. Fourth, looking
at the normal QQ-plots of the standardized residuals, Panels 3 and 7, both models line up very
well with the 45deg-line indicating that the residuals are equally plausibly normally distributed.
Fifth, comparing the plots of standardized residuals vs. fitted values, Panels 4 and 8, Model 1
shows a marked U-shape showing dependence on fitted values and a missing nonlinear explanatory
variables, whereas the plot for Model 2 is more uniformly scattered, looking like the “stars in the
night sky.”
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(5.) In the 1984 article “Diversity and Distribution of the Pedunculate Barnacles,” in Crus-
taceana, researchers gave counts of the Octolasmis tridens and the O. lowei barnacles on each
of 10 lobsters. Does it appear that the barnacles compete for space on the surface of a lobster? If
they do compete, do you expect that the number of O. tridens and the number of O. lowei to be
positively or negatively correlated? Run a test to see if the barnacles compete for space. State the
assumptions on the data. State the null and alternative hypotheses. State the test statistic and
the rejection region. Compute the statistic and state your conclusion.

> O.tridens = c( 645, 320, 401, 364, 327, 73, 20, 221, 3, 5 )

> O.lowei = c( 6, 23, 40, 9, 24, 5, 86, 0, 109, 350 )

> cor(O.tridens, O.lowei)

[1] -0.551912

> plot(O.tridens, O.lowei, pch = 19, main = "Barnacle Counts per Lobster")
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The scatterplot show that when there are few O. tridens then there are many O. lowei and
vice versa. There seems to be a competition, which we expect will yield a negative correlation
between the counts of the two barnacle species.

To do a test of correlation, it is assumed that the data points (xi, yi) some from a bivariate
normal distribution. Since the scatterplot is ”L”-shaped, this may not hold, although it is hard
to tell from such a small sample. The null and alternative hypotheses are on the correlation
coefficient.

H0 : ρ = 0; Ha : ρ < 0.

To test against zero, we use the Pearson’s correlation test. The test statistic is

t =
r
√
n− 2√

1− r2

Under the null hypothesis, it is distributed according to the t-distribution with n− 2 degrees of
freedom. Thus the rejection region is t ≤ −tα,n−2 for the one-tailed test. There are n = 10 data
points. Computing, we find

t =
r
√
n− 2√

1− r2
=

(−0.551912)
√

8√
1− (−0.551912)2

= −1.871973

At the significance level α = .05 we find tα,n−2 = t.05,8 = 1.860 from Table A5 in the text. Thus
we reject the null hypothesis. There is significant evidence that the correlation is negative.
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