Math 3210 § 2. First Midterm Exam Name: Golutions
Treibergs January 22, 2020

1. Prove that for every natural number n, Z E(K)=(n+1)!—1.

Proof by induction.

BASE CASE. Let n = 1. Then the left side equals Y ,_, k(k!) = Z/lc:1 E(k)y=1-11=1.
The right side is (n +1)! —1 =21 —1 = 1. Since these are equal, the base case holds.
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INDUCTION CASE. Assume for some n € N that Zk(k') = (n+ 1) — 1. Then for

n+ 1, by applying the induction hypothesis,
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so that the equation holds with n + 1 establishing the induction step. As the base case and
induction cases hold, by induction, Z kE(k!) = (n+ 1)! = 1 holds for all n € N.
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2. Assume that the real numbers a, b, ¢ and d satisfy ad — bc # 0. Let f(z) = ax——i’—_d'
cx

Determine the natural domain X = {x € R: f(z) is defined.}. Does it depend on a, b, c or
d? Define: f: X — R is one-to-one. Define: f: X — R is onto. Prove that f : X - R
is one-to-one. Find f(X). Is f onto? Why or why not?

The natural domain is X = {# € R: cx +d # 0}. In case ¢ = 0 then ad — bc = 0 implies
ad #0soa#0and d# 0. Soif c=0 then X = R. OtherwiseX:R\{ff

f+ X — R is one-to-one if whenever for z,y € X such that z # y then f(z) # f(y). [ is
onto if f(X) =R, or in other words, for every y € R, there is © € X such that f(z) = y.

To show f is one-to-one, suppose there are z,y € X such that f(z) = f(y). This implies

ar+b ay+b
cx+d cy+d

Hence (azx + b)(cy + d) = (ay + b)(cx + d) or after expanding,
acry + adx + bey + bd = acxy + ady + bex + bd.

Simplifying,
(ad — bc)x = (ad — be)y.

But since ad—bc # 0 we may divide both sides by it to deduce z = y, namely, f is one-to-one
on X.



f: X — Ris onto if ¢ = 0. Otherwise f is not onto. To see it, choose y € R and try to
solve for z € X so that f(x) =y. In case ¢ = 0 which implies a # 0 and d # 0 we solve

y=flr)= 22

to get
dy —b
r=——.

a

Thus in this case, f is onto and in this case, f(X) = R. (After all, f is in this case just a
linear function with nonvanishing x coefficient.)

In case ¢ # 0, then f is not onto. In trying to solve for some y € R we see that

ar +b
implies
(cx+d)y=ax+b
SO

(cy —a)x =b—dy.

Thus, if soluble this gives
b—dy

cy—a

Tr =

This equation has no solution if cy = a, i.e., f(X) misses the point y = ¢ so f(X) = R\{%}.
Thus f is not onto.

. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Let X be a set and E, be subsets of X for all « € A. Then
X\ (UQGA Ea) = ﬂaGA (X\Ea)‘
TrUE. We show z € X\ (U,cu Fa) if and only if € N, 4 (X\Ea). Indeed, by
deMorgan’s Law and the distributivity for logical statements,

ng\(U Ea> — [xeX}/\lxgé (U Ea>

a€cA acA

ool (y)

[xe XA [~{(Ba € A)z € E,}]
[z € X]A[(Va € A) ~ {x € E,}]
[z € X|A[(Va € A)x ¢ E,]

Vae A)(x e X]A [z ¢ E,))
(Va € A) (x € X\E,)
ze () (X\Ed).

acA

rroere 1

(b) STATEMENT. If f: A — B then f~Y(f(E)) = E for every subset E C A.
FALSE. Let A= B =R and f(z) = 2. Choosing E = [2,3) we see that f(E) = [4,9)
and f(f(E)) = (-3,2] U[2,3) £ .

[\



4.

(c) Let f: A— B be a function. Then f(ENG) = f(E)N f(G) for all subsets E and G

of A.

FALSE. Let A= B =R and f(z) = 2% For E = [1,2] and G = (—2,—1) we have
ENG=0s0 f(ENG) = 0 but f(E) = [1,4] and f(G) = (1,4) so F(E) N f(E) =
(1,4) # f(ENG).

(a) Let P and @ be logical statements. Prove that

(PVQ) = (PAQ) is equivalent to P <— Q.
We prove this using truth tables. The two composite statments have the same truth
values, so are equivalent.

| P | Q |PVQ|PAQ|(PVQ = (PAQ) | P = Q
T T T T T T
F T T F F F
T F T F F F
F F F F T T

(b) Recall the Peano Axioms for the natural numbers N:

[N1.] There is an element 1 € N.

[N2.] For each n € N there is a successor element s(x) € N.

[N3.] 1 is not the successor of an element of N.

[N4.] If two elements of N have the same successor, then they are equal.
[N5.] 1If a subset A C N contans 1 and is closed under succession

(meaning s(n) € A whenever n € A), then A = N.

The Peano Azxioms don’t define addition nor multiplication. For m,k € N, how are
m ~+ k and mk defined? How are the Peano Azioms used in these definitions?

The Peano Axioms imply that these formulae may be uniquely defined recursively.
Choose n € N.

For addition, we define the sequence x, = n + k for ¥ € N. The initial term is
1 =n+1=s(n), and then for k € N, 211 =n+ (k+ 1) = s(n + k) = s(xx), where
s(n) is the successor function in N.

Using addition just defined, we may now define multiplication analgously. We define
the sequence yr = n -k for k € N. We take as initial term y; = n -1 = n, and then for
keN,yprr=n-(k+1)=mn-k)+n=y; +n.

One then shows that the arithmetic properties of (N, +, -) hold, using induction and the
definitions just given. For example, the associative property (n+ (m-+k) = (n+m)+k
for all m,n,k € N) and commutative property (n +m = m + n for all m,n € N) of
addition are argued in the text. There are analgous properties for multiplication and
distributivity.



5. Let N denote the natural numbers. Let E C R be a set of real numbers given by
E={zeR: (VneN) (ImeN) z<n = z>m }.

Ezxpress E in terms of intervals and and prove your expression equals E.

Using P = (@ is equivalent to (~ P) V @, we see that

E={zeR:(VneN)FmeN) z<n = x>m}
={zeR:(VneN)FmeN) (z>n)V(z>m)}

= ﬂ U [n, 00) U (m, 00)

neNmeN

N {[1,00), ifn=1;
nen (100), ifn > 1.
= (1, 00).

To prove E = (1,00), we show that (1,00) C E and E C (1,00).

Suppose = € (1,00) to show x € E. Thus > 1. Choose n € N and let m = 1. Then > m
is true, therefore * <n = x > m is true whether or not x < n is true. Thus x € E.

We show the contrapositive: if 2 ¢ (1,00) which is equivalent to < 1 then z ¢ E.
But z ¢ FE is equivalent to ~ (Vn € N)(Im € N)[xt < n = =z > m] is equivalent to
(In € N)(Vm € N)[(z < n) A (z < m)]. By taking n = 2 and then for any m € N,
x <nAz<mistrue since x < 1. Thus z ¢ E.



