
Math 3210 § 2.
Treibergs

First Midterm Exam Name: Solutions
January 22, 2020

1. Prove that for every natural number n,

n∑
k=1

k(k!) = (n+ 1)!− 1.

Proof by induction.

Base Case. Let n = 1. Then the left side equals
∑n
k=1 k(k!) =

∑1
k=1 k(k!) = 1 · 1! = 1.

The right side is (n+ 1)!− 1 = 2!− 1 = 1. Since these are equal, the base case holds.

Induction Case. Assume for some n ∈ N that

n∑
k=1

k(k!) = (n + 1)! − 1. Then for

n+ 1, by applying the induction hypothesis,

n+1∑
k=1

k(k!) =

n∑
k=1

k(k!) + (n+ 1)(n+ 1)!

= (n+ 1)!− 1 + (n+ 1)(n+ 1)!

= (n+ 1)![1 + n+ 1]− 1

= (n+ 1)![n+ 2]− 1

= (n+ 2)!− 1

= [(n+ 1) + 1]!− 1,

so that the equation holds with n+ 1 establishing the induction step. As the base case and

induction cases hold, by induction,

n∑
k=1

k(k!) = (n+ 1)!− 1 holds for all n ∈ N.

2. Assume that the real numbers a, b, c and d satisfy ad − bc 6= 0. Let f(x) =
ax+ b

cx+ d
.

Determine the natural domain X = {x ∈ R : f(x) is defined.}. Does it depend on a, b, c or
d? Define: f : X → R is one-to-one. Define: f : X → R is onto. Prove that f : X → R
is one-to-one. Find f(X). Is f onto? Why or why not?

The natural domain is X = {x ∈ R : cx + d 6= 0}. In case c = 0 then ad − bc = 0 implies
ad 6= 0 so a 6= 0 and d 6= 0. So if c = 0 then X = R. Otherwise X = R\

{
−dc
}

.

f : X → R is one-to-one if whenever for x, y ∈ X such that x 6= y then f(x) 6= f(y). f is
onto if f(X) = R, or in other words, for every y ∈ R, there is x ∈ X such that f(x) = y.

To show f is one-to-one, suppose there are x, y ∈ X such that f(x) = f(y). This implies

ax+ b

cx+ d
=
ay + b

cy + d
.

Hence (ax+ b)(cy + d) = (ay + b)(cx+ d) or after expanding,

acxy + adx+ bcy + bd = acxy + ady + bcx+ bd.

Simplifying,
(ad− bc)x = (ad− bc)y.

But since ad−bc 6= 0 we may divide both sides by it to deduce x = y, namely, f is one-to-one
on X.
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f : X → R is onto if c = 0. Otherwise f is not onto. To see it, choose y ∈ R and try to
solve for x ∈ X so that f(x) = y. In case c = 0 which implies a 6= 0 and d 6= 0 we solve

y = f(x) =
ax+ b

d

to get

x =
dy − b
a

.

Thus in this case, f is onto and in this case, f(X) = R. (After all, f is in this case just a
linear function with nonvanishing x coefficient.)

In case c 6= 0, then f is not onto. In trying to solve for some y ∈ R we see that

y = f(x) =
ax+ b

cx+ d

implies
(cx+ d)y = ax+ b

so
(cy − a)x = b− dy.

Thus, if soluble this gives

x =
b− dy
cy − a

.

This equation has no solution if cy = a, i.e., f(X) misses the point y = a
c so f(X) = R\{ac }.

Thus f is not onto.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Let X be a set and Eα be subsets of X for all α ∈ A. Then
X\
(⋃

α∈AEα
)

=
⋂
α∈A (X\Eα).

True. We show x ∈ X\
(⋃

α∈AEα
)

if and only if x ∈
⋂
α∈A (X\Eα). Indeed, by

deMorgan’s Law and the distributivity for logical statements,

x ∈ X\

(⋃
α∈A

Eα

)
⇐⇒ [x ∈ X] ∧

[
x /∈

(⋃
α∈A

Eα

)]

⇐⇒ [x ∈ X] ∧

[
∼

{
x ∈

(⋃
α∈A

Eα

)}]
⇐⇒ [x ∈ X] ∧ [∼ {(∃α ∈ A)x ∈ Eα}]
⇐⇒ [x ∈ X] ∧ [(∀α ∈ A) ∼ {x ∈ Eα}]
⇐⇒ [x ∈ X] ∧ [(∀α ∈ A)x /∈ Eα]

⇐⇒ (∀α ∈ A) ([x ∈ X] ∧ [x /∈ Eα])

⇐⇒ (∀α ∈ A) (x ∈ X\Eα)

⇐⇒ x ∈
⋂
α∈A

(X\Eα).

(b) Statement. If f : A→ B then f−1(f(E)) = E for every subset E ⊂ A.

False. Let A = B = R and f(x) = x2. Choosing E = [2, 3) we see that f(E) = [4, 9)
and f−1(f(E)) = (−3, 2] ∪ [2, 3) 6= E.
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(c) Let f : A→ B be a function. Then f(E ∩G) = f(E) ∩ f(G) for all subsets E and G
of A.

False. Let A = B = R and f(x) = x2. For E = [1, 2] and G = (−2,−1) we have
E ∩ G = ∅ so f(E ∩ G) = ∅ but f(E) = [1, 4] and f(G) = (1, 4) so F (E) ∩ f(E) =
(1, 4) 6= f(E ∩G).

4. (a) Let P and Q be logical statements. Prove that
(P ∨Q) =⇒ (P ∧Q) is equivalent to P ⇐⇒ Q.

We prove this using truth tables. The two composite statments have the same truth
values, so are equivalent.

P Q P ∨Q P ∧Q (P ∨Q) =⇒ (P ∧Q) P ⇐⇒ Q

T T T T T T

F T T F F F

T F T F F F

F F F F T T

(b) Recall the Peano Axioms for the natural numbers N:

[N1.] There is an element 1 ∈ N.

[N2.] For each n ∈ N there is a successor element s(x) ∈ N.

[N3.] 1 is not the successor of an element of N.

[N4.] If two elements of N have the same successor, then they are equal.

[N5.] If a subset A ⊂ N contans 1 and is closed under succession

(meaning s(n) ∈ A whenever n ∈ A), then A = N.

The Peano Axioms don’t define addition nor multiplication. For m, k ∈ N, how are
m+ k and mk defined? How are the Peano Axioms used in these definitions?

The Peano Axioms imply that these formulae may be uniquely defined recursively.
Choose n ∈ N.

For addition, we define the sequence xk = n + k for k ∈ N. The initial term is
x1 = n+ 1 = s(n), and then for k ∈ N, xk+1 = n+ (k + 1) = s(n+ k) = s(xk), where
s(n) is the successor function in N.

Using addition just defined, we may now define multiplication analgously. We define
the sequence yk = n · k for k ∈ N. We take as initial term y1 = n · 1 = n, and then for
k ∈ N, yk+1 = n · (k + 1) = (n · k) + n = yk + n.

One then shows that the arithmetic properties of (N,+, ·) hold, using induction and the
definitions just given. For example, the associative property (n+(m+k) = (n+m)+k
for all m,n, k ∈ N) and commutative property (n + m = m + n for all m,n ∈ N) of
addition are argued in the text. There are analgous properties for multiplication and
distributivity.
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5. Let N denote the natural numbers. Let E ⊂ R be a set of real numbers given by

E = {x ∈ R : (∀n ∈ N) (∃m ∈ N) x < n =⇒ x > m } .

Express E in terms of intervals and and prove your expression equals E.

Using P =⇒ Q is equivalent to (∼ P ) ∨Q, we see that

E = {x ∈ R : (∀n ∈ N)(∃m ∈ N) x < n =⇒ x > m}
= {x ∈ R : (∀n ∈ N)(∃m ∈ N) (x ≥ n) ∨ (x > m)}

=
⋂
n∈N

⋃
m∈N

[n,∞) ∪ (m,∞)

=
⋂
n∈N

{
[1,∞), if n = 1;

(1,∞), if n > 1.

= (1,∞).

To prove E = (1,∞), we show that (1,∞) ⊂ E and E ⊂ (1,∞).

Suppose x ∈ (1,∞) to show x ∈ E. Thus x > 1. Choose n ∈ N and let m = 1. Then x > m
is true, therefore x < n =⇒ x > m is true whether or not x < n is true. Thus x ∈ E.

We show the contrapositive: if x /∈ (1,∞) which is equivalent to x ≤ 1 then x /∈ E.
But x /∈ E is equivalent to ∼ (∀n ∈ N)(∃m ∈ N)[x < n =⇒ x > m] is equivalent to
(∃n ∈ N)(∀m ∈ N)[(x < n) ∧ (x ≤ m)]. By taking n = 2 and then for any m ∈ N,
x < n ∧ x ≤ m is true since x ≤ 1. Thus x /∈ E.

4


