Math 3210 § 2. Second Midterm Exam Name: Golutions
Treibergs February 19, 2020

1. Let A = {:r €cQ:a2%2-22< 8}, where Q denotes the rational numbers. Define: M is the
least upper bound of A. Show that A is nonempty. Show that A is bounded above. Find the
least upper bound of A and prove your result.

Let A be a nonempty subset of the real numbers which is bounded above. Then the real
number M is the least upper bound of A if (1) it is an upper bound (Va € A)(a < M),
and (2) it is the least of all upper bounds, that is, no smaller number is an upper bound
(Ve < M)(Ja € A)(x < a).

Let f(x) = 22 — 22 —8 = (x —4)(2+2). Then the condition to be in A is that = be rational
and f(x) < 0. A is nonempty because the number 0 € A: 0 is rational and f(0) = —8 < 0.

4 is an upper bound for A. If z > 4 we show = ¢ A so that whatever is left in A is at most
four. If > 4 then  —4 > 0 and = 4+ 2 > 0 so their product f(x) > 0, thus x ¢ A.

We claim that 4 is also the least upper bound. We showed it is an upper bound. To show
there is no smaller upper bound, suppose z < 4. Then max(—2,z) < 4. By the density of
rationals, there is a € Q such that max(—2,2) < a < 4. Thena—4 < 0and a+2 > 0 so
their product f(a) < 0so a € A. Thus there exists a € A such that z < a, thus z is not a
lower bound.

2. Recall the azioms of a field (F,+, x). For any x,y,z € F,

[A1l.] (Commutativity of Addition) r+y=y-+uzx.

[A2.] (Associativity of Addition) r+(y+z)=(x+y) + =z

[A3.] (Additive Identity) F0eF)(Vte F)0+t=t.

[A4] (Additive Inverse) F—zeF)az+(—2)=0.

[M1.] (Commutativity of Multiplication) zy = yx.

[M2.] (Associativity of Multiplication) z(yz) = (xy)z.

[M3.] (Multiplicative Identity) (31leF)1#0and (Vte F) It =t.

[M4.] (Multiplicative Inverse) If z #0 then (32t € F) (2 1)z =1.
[D.] (Distributivity) x(y+2) = zy + zz.

Using only the field axioms, show that for any a,b,c € F such that a # 0 there is at most
one solution x to the equation
a(x +b) =c.

Justify every step of your argument using just the axioms listed here.

Suppose there exist two solutions x and y. Since they are both solutions, they satisfy
a(x+b)=cand a(y +b) =c.



a(x+b) =a(y+0b) Both equal c.
“a(z+b)]=aaly+b)] a=#0so thereis a~! by M4. Pre-multiply by a~!.
“lal(x +b) =[a"ta)(y+b) M2
[aa™)(z +b) = [aa" ] (y+b) ML.
1(z+b) =1(y+b) M4.
z+b=y+b Ma3.

(x +b) + (=b) = (y+b) + (—b) By A4 there is —b. Post-add —b.
T+ b+ (=b)]=y+[b+(=b)] A2

z+0=y+0 A4,
0+z=0+4+y Al.
T=y A3.

We have shown z = y, hence all solutions have to be the same.

Not asked in this problem is whether there exist any solutions. A formula for the solution
may be found by solving for x, or by guessing x and checking that it solves the problem.

alz+b)=c The equation.
a a(x+b)]=atc a # 0 so there is a~! by M4. Pre-multiply by a=!.
[a=ta](z +b) =a"tec M2.
[aa=(x +b) =atc MI1.
1(z+b) =atec M4.
r+b=a"lc M3.
(x4 b)+ (=b) = (a"te¢) + (=b) By A4 there is —b. Post-add —b.
r+[b+ (=b)] = (a7tc) + (=b) A2
r+0=(a"te) + (-b) A4,
0+ =(a"tc)+ (—b) Al.
= (a"te)+ (=b) A3.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a)

STATEMENT. In an ordered field, if vz > yz and z > 0 then © > y.

TRUE. Since z > 0 we have z # 0 so 27! exists and z > 0 implies 2=+ > 0. (If

not, =1 < 0 so multiplying by z > 0 gives 1 = 227! = (271)2z < 027! = 0 contrary
to 1 > 0.) Hence the inequality is preserved upon multiplying by z~!. It gives
(v2)2~! > (yz)z~! which implies z = 1o = 21 = x(227}!) = (22)27! > (y2)2z~! =
yzz ) =yl =1y =y.

STATEMENT. Let {z,} be a convergent sequence such that every x,, is irrational. Then
the limit lim x, s irrational.

n—oo
V2

FALSE. Let z, = —. Then x,, is irrational as it is the product of rational % and

irrational v/2, but z, — 0 as n — oo, where the limit, 0, is rational.



(¢c) STATEMENT. Let f and g be two real valued functions defined for all reals such that
sup f =supg = 1. Then sup(f + g) = 2.
R R R

sinz, if z > 0; 0 if z > 0;
FALSE. Let = ’ ~ 7 and =< = . Th R) =
et /() {0, if z < 0. and g(z) sinz, if z <O. en f(R)
g(R) =[-1,1] sosup f =supg = 1. But (f + g)(z) = sinz so (f + ¢g)(R) = [-1,1]
R R

and sup(f +g¢g) =1#2.
R

4. Recall that the rational numbers are defined to be the set of equivalence classes Q = S/ ~
where S = {% ca,beZ, b# O} is the set of symbols (pairs of integers) and the symbols are

a ¢
equivalent if they represent the same fraction 377 iff ad = bc. We denote the equivalence

class, the “fraction,” [%] to distinguish it from a symbol from S. Given fractions x,y € Q,

how should addition x 4+ y and multiplication be xy defined to make Q a field? You don’t
need to check that these are well defined nor that the axioms of a field are satisfied. Suppose
T2

we wish to define the function f:Q — Q by f ({%D = 21[)2}
a

Is f well defined? Why or why not? State the Completeness Axiom for an ordered field F.
Do the rational numbers Q satisfy the Completeness Axiom? Why or why not?

Addition and multiplication are defined for arbitrary {% , [2] € Q by

a c ad + be alrc ac
51+l = [bd } R
One then checks this addition and multiplication are well defined and with these, Q satisfies
the field axioms.
To show that f is well defined we need to show that if % ~ 2 then f ([%D =f ([ED
2 2
which is the same as a;:— R But % ~ 2 holds if ad = be. Now using this we see

that (c? + d?)a? = a®c® + a®d® = a*c® + b*c® = (a? + b?)c? which says

2 62

a
a2+ 2raz
The ordered field F satisfies the completeness axiom if every nonempty set of F which is
bounded above has a least upper bound in F.

The rationals are not complete. The set A = {x € Q : 22 < 2} is bounded above, (say by
3 since if > 3 then 22 > 9 > 2 so x ¢ A, hence members of A are at most 3). The least
upper bound would have to be v/2, but v/2 is not rational.

In fact we showed that if ¢ > 0 is a rational upper bound for A so ¢*> > 2 then § = 1/q+q/2
is rational, 0 < G < ¢ but (§)? > 2 so § is a strictly smaller upper bound for A. Similarly,
if 7 > 0 is rational such that 72 < 2 then 7 = 4r/(2 + r?) is rational, (7)2 < 2 and r < 7 so
that for any r € A there is a strictly greater 7 € A. Thus the positive least upper bound
must be smaller that any rational such that ¢ > 2 and larger than any rational such that
r? < 2. Hence the least upper bound would satisfy 2 = 2, but there is no such rational. )



5. Let {x,} be a real sequence and L a real number. Define: L = lim x,. Using just your
n—oo

n?4+n .
exists Cmd prove your answer.

definition, determine whether the limit L = lim —
n—oo N4 —
The sequence is said to tend to a limit, L = lim x,, if for every ¢ > 0 there is an N € R
n— o0
such that
|z, — L| <e whenever n > N.
2 16
We claim 1 = lim n2 + n. To prove it, choose € > 0. Let N = — + 4. For any n € N
n—oo N4 — 3
such that n > N we have n >4 son?>—-7>0, 7n > 7 and %n2>7. Thus
| I n?4+n n24+n n?2-7 n+7 n+7
Ty — = — = — = =
n2—17 n2—7 n2-7 n2—7 n2-7
n+Tmm 8n 16 16 16 16¢ L(is_g

< — = < —= = = <
= 77,2—%TL2 %nz n N §+4 16 + 4e 16



