This is an open book exam. Give complete solutions. Be clear about the order of logic and state the theorems and definitions that you use. There are [150] total points. **Do SEVEN of nine problems.** If you do more than seven problems, only the first seven will be graded. Cross out the problems you don't wish to be graded.

1	/21
2	/22
3	/21
4.	/22
5.	/22
6.	/21
7.	/22
8.	/22
9.	/20
Total	/150

1. (a) [10] Let $n \ge 1$ and 0 < x < y. Show that $nx^{n-1}(y-x) \le y^n - x^n \le ny^{n-1}(y-x)$.

(b) [11] Determine whether the improper integral exists.

$$\int_0^\infty \frac{dx}{\sqrt{x}(1+x^2)}$$

Math 3210 \S 2. Treibergs

Final Exam

Name:______ April 28, 2020

2. (a) [3] Let $f:(a,b)\to \mathbf{R}$. Define the infimum of f, $\inf_{x\in(a,b)}f(x)$.

(b) [19] Find $\inf_{x \in (0,1)} \frac{1}{x+1}$ and prove your result.

3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

(a) [7] If x, y > 0 then $\log(xy) = \log x + \log y$.

TRUE: O FALSE: O

(b) [7] If $f, g : [0, 1] \to \mathbb{R}$ are bounded functions such that, fg is integrable on [0, 1], then at least one of f or g is integrable on [0, 1].

TRUE:
FALSE:

(c) [7] Let $f: \mathbf{R} \to \mathbf{R}$. Suppose both limits $\lim_{x \to 0+} f(x)$ and $\lim_{x \to 0-} f(x)$ exist. Then f is continuous at 0.

4. (a) [3] Define what it means for f to be integrable on [a,b] and what the $Riemann\ integral$ of f on [a,b] is.

(b) [19] Let I = [0,1] and $f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Q}; \\ 0, & \text{in } x \notin \mathbb{Q}. \end{cases}$ where \mathbb{Q} is the rational numbers. Find $\int_{-I} f(x) \, dx$ and $\int_{-I} f(x) \, dx$ and explain. What do they tell you about f?

5. For $n \in \mathbf{N}$, let $f, f_n : \mathbf{R} \to \mathbf{R}$ be functions.

(a) [3] Define: the sequence $\{a_n\}$ is a Cauchy Sequence.

(b) [9] Prove using only the definition (a) that if $\{a_n\}$ is a Cauchy Sequence, then $\{a_n\}$ is bounded.

(c) [10] Prove using only the definition (a) and the result (b) that if $\{a_n\}$ and $\{b_n\}$ are Cauchy Sequences, then $\{a_nb_n\}$ is a Cauchy Sequences.

6. (a) [3] Let $f, f_k : \mathbb{R} \to \mathbf{R}$. Define: $f(x) = \sum_{k=1}^{\infty} f_k(x)$ converges uniformly on \mathbf{R} .

(b) [18] Determine whether the series of functions $\sum_{k=1}^{\infty} f_k(x)$ converges uniformly, where

$$f_k(x) = \begin{cases} \frac{x(k-x)}{k^4}, & \text{if } 0 \le x \le k; \\ 0, & \text{otherwise.} \end{cases}$$

7. Let $f(x) = \frac{1}{x+1}$, a > -1 and n be an integer. For each part, determine the limit and explain in sufficient detail to justify why your limit exists.

(a) [5]
$$\lim_{n\to\infty} f\left(a+\frac{1}{n}\right) =$$

(b) [5]
$$\lim_{n \to \infty} n \cdot \left[f\left(a + \frac{1}{n}\right) - f(a) \right] =$$

(c) [6]
$$\lim_{n \to \infty} n \cdot \int_{a}^{a+1/n} f(t) dt =$$

(d) [6]
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(a + \frac{k}{n}\right) =$$
.

- 8. Let f be a bounded function on the closed bounded interval [a, b].
 - (a) [3] Complete the statement of the theorem. [Of several possible answers, select the one you prefer for part (b).]

Theorem. The bounded function f is integrable on [a,b] if and only if

(b) [19] Using only the theorem in (b), show that $f(x) = \sqrt{x(1-x)}$ is integrable on [0,1].

9. For each infinite series, determine whether the series is absolutely convergent, convergent of divergent.

(a)
$$[4] \sum_{k=1}^{\infty} (-1)^k \log \left(\frac{k+1}{k}\right)$$
.

Absolutely Conv.:

CONDITIONALLY CONV.:

DIVERGENT: (

(b)
$$[4] \sum_{k=1}^{\infty} (-1)^k \frac{2^k}{3^k + 1}$$
.

Absolutely Conv.:

CONDITIONALLY CONV.:

DIVERGENT:

(c) [4]
$$\sum_{k=1}^{\infty} (-1)^k \frac{\log k}{\log(k^2 + k + 1)}$$
.

Absolutely Conv.: \bigcirc

CONDITIONALLY CONV.:

DIVERGENT: ()

(d)
$$[4] \sum_{k=1}^{\infty} (-1)^k \frac{k^k}{(2k+1)!}$$
.

Absolutely Conv.:

CONDITIONALLY CONV.:

DIVERGENT: ()

(e)
$$[4] \sum_{k=1}^{\infty} (-1)^k \frac{k(k+2)}{(k+1)(k+3)(k+5)}$$
.

Absolutely Conv.:

CONDITIONALLY CONV.:

DIVERGENT: (