Math 3210 § 3. Second Midterm Exam Name: Golutions
Treibergs October 6, 2021

1. Let f : R — R be a real valued function defined on the reals. Define: M = sup f. Let
R

2

——- Find M =supg and prove your result.
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Let f : R — R be a real function and M € R.. If f is not bounded above we say sup f = oc.
R
If f is bounded above then we say sup f = M where M is a real number such that (1)
R

f(x) < M for all z € R and (2) for every s < M there is an x € R such that f(z) > s.
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5 = 1. To see (1) that M =1 is an upper bound, we have
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for all z € R. To see (2) that no smaller number is an upper bound, choose s < 1. If s > 0
let z = 2(1 — 5)~*/2. Then
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If s <0let z = 1. In this case g(z) = 3 > 0 > s. In either case, there is 2 € R such that
g(x) > s, proving (2) holds as well.

2. Let {x,} be a real sequence and L a real number. Define: L = lim z,. Using just your
n—oo

n —

definition, determine whether the limit L = lim exists and prove your answer.

n—oo 3N —
For the real sequence {x,} and real number L we say L = lim z,, if for every ¢ > 0 there

n—oo
is an N € R such that
|z, — L| < e whenever n > N.
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We claim HILH;O 37;1 1= 3 To see it, choose € > 0. Let N = max{4, 5-}. Then for

every n € N such that n > N we have
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using3n—4>3n—n>Osincen>4andusingN2é.



3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a)

(b)

Let {x,,} be a real sequence such that 41 > xy, for alln. Then lim z, = co.
n—oo

1
FALSE. The sequence x, = —— is strictly increasing and bounded above by 0.
n

Let {x,} be a convergent sequence such that every x, is rational. Then the limit

lim x,, must be rational.
n—r oo

FALSE. The rational sequence constructed in class and in the text from Newton’s
Method to find the positive root of f(z) = 2 — 2, namely given recursively by z; = 3
x2 +2

2x,
and converges to v/2, which is irrational. Another example is the sequence of rational
partial sums that converge to the irrational number e:

is a monotonically decreasing sequence that is bounded below

and x,41 =

1 1 1 1

A third example is gotten by taking the the truncations of the decimal expansion of
an irrational number, e.g.,

z1 =14

z9 = 1.41

z3 = 1.414

z4 = 1.4142
z5 = 1.41421
zg = 1.414213

z7 = 1.4142135

(¢) There is no injective function from the real numbers to the rational numbers.

TRUE. If there were an injective function f : R — Q then R would be dominated by
Q (R < Q) or the cardinality of Q is at least as large as the cardinality of R, which is
false, since Q is countable whereas R is uncountable.



4. Let {ap} and {b,} be two real sequences that converge to real numbers a and b:

a= lim a,, b= lim b,.
n—roo n—r oo

Using just the definition of convergence (and not the Main Limit Theorem), prove that the
sequence {an|bn|} converges and

alb| = nh_{rgo n |y |.

The proof is like proving that the limit of a product is the product of a limit. Since {b,}
is convergent, then it is bounded: there is an M € R such that |b,| < M for all n. Choose
€ > 0. By the convergencce of {a;} and {b,} there are Ny, N5 € R such that

€
2M +1

|bn, — 0| <

lan, —a| < whenever n > N; and

€
—_ h > Ns.
el +1 whenever n b

Let N = max{Ny, N2}. For any n € N such that n > N we have
|an|bn| — alb]| = |an|ba| — albn| + albn| — alb|
< |anlbn| = albn|| + |albn| — alb| Use Triangle Inequality
= }(an - a)|an + ’a(lbn‘ - |b|)|
= lan — al [ba] + lal [[ba] — [b]]

<lan —a| M + |a| |b, — ¥ Use |b,| < M and Reverse Triangle Ineq.
5 £
< Migla———
<o Ml g
cfifo,
2 2

5. Let 0 < a < 1 and define the sequence {x,} recursively by x1 = 0 and

a
14z,

Tn+1 =1-

Prove that {x,} is bounded above. Prove that {x,} is strictly increasing. Is {x,} conver-
gent? Why? If x,, = L as n — oo, what is L?

First we observe that x,, > 0 for all n. We see this by an induction argument: z;1 =0 >0
by prescription. Assuming x,, > 0 we get

—1- >1-
Intl l+a, = 1+

Second we observe each term is bounded above by one: for every n,

=1- <1l-0=1
Ln41 1 +In
since z,, > 0 implies
a
> 0.
1+,
Third we show x,, is strictly increasing by induction. For the base case,
a a
=1- =1- =1—-a>0=uz.
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For the induction case, assume x,,+1 — x,, > 0 for some n. Then
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a a
1+, 1+ Tpt1
a(l4+2pt1 —1—xy)
(14 zp)(1+ Tpa1)
a(Tpy1 — Tp)

= >0
(I +zn)(1 +2py1)

by the induction hypothesis and positivity of the denominator. Thus we have shown by
induction that x,1 > x, for all n: {x,} is strictly increasing.

Thus {z, } is a increasing sequence which is bounded above. By the Monotone Convergence
Theorem, the limit exists: x,, — L as n — 0o, where L is a real number. To find L we take

the recursion formula a

1+,

to the limit. The left side is a subsequence and the right converges by the Main Limit
Theorem.

Tn41 = 1-

a
1+L

Hence
a=(1-L)Y(A1+L)=1-L2

so, since L > x,, > 0,

L=+v1—a.



