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March 2, 2022

1. Let f : I → R be a real valued function defined on the interval I = (0, 1).

Define: M = infI f . Let g(x) =
1

x
. Find M = infI g and prove your result.

If f is not bounded below, then we define infI f = −∞. If f is bounded below, then the
real number M = infI f if (1) M is a lower bound, that is M ≤ f(x) for all x ∈ I and (2)
M is the greatest of all lower bounds. In other words, no larger number is a lower bound,
that is, for every b > M there is z ∈ I so that f(z) < b.

The function g(x) =
1

x
is decreasing on the interval I thus we claim infI g = 1. To see that

1 is a lower bound, we observe that whenever x ∈ I, that is 0 < x < 1 then 1 < x−1 = f(x),
so M = 1 is a lower bound. To see that no greater number is a lower bound, choose b > 1.

Then 0 <
1

b
< 1 and f

(
1

b

)
= b. Thus if we choose any number

1

b
< z < 1, such as the

average z =
1

2

(
1

b
+ 1

)
, then z ∈ I and since f is decreasing, b = f

(
1

b

)
> f (z). Thus

there is z ∈ I so that f(z) < b.

2. Let {xn} be a real sequence and a a real number. Define: a = lim
n→∞

xn. Find L and, using

just your definition, prove that L is the limit. L = lim
n→∞

√
1 + 4n2

1 + n
.

a ∈ R is the limit, a = lim
n→∞

xn means that for every ε > 0 there is an N ∈ R such that

|xn − a| < ε whenever n > N .

By the Main Limit Theorem, we see that

L = lim
n→∞

√
1 + 4n2

1 + n
= lim

n→∞

√
1
n2 + 4

1
n + 1

=

√
0 + 4

0 + 1
= 2.

To prove that L is the limit, we choose ε > 0. Let N =
4

ε
. Then for any n ∈ N such that

n > N we have by rationalizing the numerator

|xn − L| =

∣∣∣∣∣
√

1 + 4n2

1 + n
− 2

∣∣∣∣∣ =

∣∣∣∣∣
√

1 + 4n2 − 2(n+ 1)

1 + n

∣∣∣∣∣
=

∣∣∣∣∣ [
√

1 + 4n2 − 2(n+ 1)]

1 + n
· [
√

1 + 4n2 + 2(n+ 1)]

[
√

1 + 4n2 + 2(n+ 1)]

∣∣∣∣∣
=

∣∣[1 + 4n2]− 4(n+ 1)2
∣∣

[1 + n] [
√

1 + 4n2 + 2(n+ 1)]

≤ |−8n− 3|
2(1 + n)2

≤ 8n+ 8

2(1 + n)2
=

4

1 + n
<

4

1 +N
<

4

N
= ε.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statemenbt: Let {xn} and {yn} be a real sequences such that yn − xn =
1

2n
for all

n . Then ∅ 6=
∞⋂

n=1

[xn, yn].

False. The statement would be true if assumed that the intervals were nested,
[x1, y1] ⊃ [x2, y2] ⊃ [x3, y3] ⊃ · · · by the Nested Intervals Theorem. However that
was not given, so we construct some disjoint intervals of the right lengths whose inter-
section is empty, e.g., [x1, y1] = [0, .5], [x2, y2] = [1, 1.25] and [xn, yn] = [2, 2 + 1

2n ] for
n ≥ 3. Then ∅ =

⋂∞
n=1[xn, yn].

(b) Statement: If the sequence {xn} is not convergent, then none of its subsequences is
convergent.

False. The sequence xn = (−1)n is not convergent but has the convergent subsequence
x2n = (−1)2n = 1→ 1 as n→∞.

(c) Statement: Suppose the sequence {an} satisfies an 6= 0 for all n and converges to
a ∈ R. Then the sequence {1/an} converges.

False. The statement would be true by the Main Limit Theorem if the additional

assumption that a 6= 0 held. But this was not given. If we take an =
(−1)n

n
→ 0 as

n→ 0 we would have
1

an
= (−1)nn which does not converge.

4. Let {an} be a real sequences that converges a = lim
n→∞

an where a < 10. Using just the

definition of convergence, prove there is an N ∈ R so that an < 10 whenever n > N .

Let ε = 10− a > 0. Since we assume an → a as n→∞, there is an N ∈ R such that

|an − a| < ε whenever n > N .

For this N , if n ∈ N is any number such that n > N , then

an = a+ (an − a) ≤ a+ |an − a| < a+ ε = a+ (10− a) = 10.

5. Define: {xn} is a Cauchy Sequence. Let xn =

n∑
k=1

sin(k)

kk
. Prove that {xn} is convergent.

A sequence {xn} is called a Cauchy Sequence if for every ε > 0 there is an N ∈ R so that

|xi − xj | < ε whenever i > N and j > N .

We show that the given sequence satisfies the Cauchy Criterion, hence is convergent. Choose
ε > 0. Let N ∈ N be large enough so that 2−N < ε. For any i, j ∈ N such that i > N and
j > N we may assume that i > j. If i = j then |ai − aj | = 0 < ε. If i < j then interchange
ai and aj . We have for such i > j, using | sin k| ≤ 1 and kk ≥ 2k whenever k ≥ 2,

|ai − aj | =

∣∣∣∣∣
i∑

k=1

sin(k)

kk
−

j∑
k=1

sin(k)

kk

∣∣∣∣∣ =

∣∣∣∣∣∣
i∑

k=j+1

sin(k)

kk

∣∣∣∣∣∣ ≤
i∑

k=j+1

| sin(k)|
kk

≤
i∑

k=j+1

1

2k
=

1

2j+1

i−j−1∑
`=0

1

2`
=

1

2j+1
·

1−
(
1
2

)i−j
1− 1

2

≤ 1

2j
<

1

2N
< ε.
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