Math 3210 § 2. Third Midterm Exam Name: Golutions
Treibergs April 6, 2022

1. Let a € R and f : R — R. State the definition: f(x) is continuous at a. Using just your
definition and not the combinations theorem, prove that f(z) = (x + 1)? is continuous at
a € R.

f R — R is said to be continuous at a € R is for every € > 0 there is a § > 0 such that

|f(z) = fla)] <€ whenever € R and |z — a] < 4.

Choose € > 0. Let § = min{?,-i-62|’1}' Then for any z € R such that | —a| < ¢ we
a

have since § < 1,
lt+a+2=|(x—a)+2a+2| <|z—a|+2a]+2<d+2]a| +2 <3+ 2al.
Using this inequality,

F(@) = F(@)] = |(@ + 1) = (a+1)?
=|(z®+22+1)— (a®>+2a+1)|
:| 2—a2+2($—a)|
= |(z+a+2)(z —a)|
=lz+a+2||z—a
< (3+2/a|)s
< @+ 2el) g5 =

2. Let I C R be an open interval and f : I — R. State the definition: f(x) is differentiable
at a € I. Suppose that f : R — R satisfies |f(z)| < |z|3/2. Using just your definition
of derivative and properties of limits of functions, prove carefully that f is differentiable at

a =0, and find f'(0).
f 1 — R is said to be differentiable at a € I if the following limit exists and is finite:

) — i F@ = 1)

r—a r —Qa
Since | f(x)| < |z[?/2, we have |£(0)| < [0]>/2 = 0 so f(0) = 0. We show that the derivative
exists and is zero f'(0) = 0. Indeed, for z # 0,

o B S = fa) @) =0 _ Jaf

el — x-—a x—0 — |z

o — [af!/?
Letting * — 0, square roots at the ends tend to zero so by the Squeeze Theorem, the
expression in the middle tends to f'(0) = 0.



3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) STATEMNET: If f is differentiable and f' > 0 everywhere in R, then f has an inverse
function which is differentiable and strictly increasing on f(R).

TRUE. The fact that f is differentiable at all z implies f is continuous at all z. The
assumption that f’(z) > 0 for all x says f is strictly increasing on R so its image
J = f(R) is an interval and f has a a contnuous inverse function f=* : J — R.
At all corresponding points f(a) = b, because f is differentiable and f’(a) # 0, the

1
derivative of the inverse function exists and satisfies T 7o) = 7la) > 0. Hence
y a
£~ is differentiable at all b € J and is strictly increasing on J.
x5 — 222+ 3
x* — 222 + 3’
TRUE. Note that the denominator 24 — 222 +3 = (22 —1)2+2 > 0 for all z so that the

rational function g(x) is continuous on R. Since f(0) =1 > 0 and f(-2) = _% <0

(b) STATEMENT: If f(x) = then there is a real number ¢ such that f(c) = 0.

the value 0 is between these two, so by the Intermediate Value Theorem, there is
¢ € (—2,0) such that f(c) = 0.

(c) STATEMENT: Suppose the function f(x) is a bounded and continuous for x € (0,1).
Suppose {x,} be a sequence in (0,1) such that z, — 1 as n — oco. Then the limit
L= lim f(z,) exists and is finite.

n—oo

FALSE. It would be true if f were uniformly continuous. For a continuous counterex-

1
ample, consider the function f(x) = cos <1> which is continuous and bounded,
—x

[f(x)] < 1, on (0,1). For the sequence z, = 1 — — — 1 as n — 00, we have
™

f(x,) = (—=1)™, which does not converge as n — oo.

4. Let f, fn : R = R be functions. State the definitions:
(a) {fn(x)} converges pointwise to a function f on R asn — oo.

(b) {fn(x)} converges uniformly to a function f on R as n — oo.

Determine whether the functions f,(x) = converge pointwise, converge uniformly,

n? 4 x2

or do not converge to a function f(x) on the R and prove your result.
The sequence of functions f,, — f is said to converge pointwise on R if for every a € R and
every € > 0 there is an IV € R such that

|fnla) — f(a)] <€ whenever n > N.

The sequence of functions f, — f is said to converge uniformly on R if for every € > 0
there is an N € R such that

|fr(a) — f(a)] <€ whenever n > N and a € R.

The sequence f,(z) = PR converges pointwise but does not converge uniformly to
n?+x

f(xz) =0 on R. To see the pointwise convergence, for any a € R we have

a
= lim —% 5 =—— =0.
n—00 n—oo n2 + a2 n—oo ] 4 &5
n




The easiest way to see that that the convergence is not uniform, we can use the theorem that
if f,, = 0 uniformly on R, then for any sequence {z,} C R we have lim,,_, f(z,) = 0.
But this fails by choosing the sequence x,, = n we find for all n € N,

nTy, n?

Jn(zn) = = :%740

n?+ax2  n?24n?

as n — oQ.

Another way is to prove the negation of the definition of uniform convergence f,, — f,
namely, to show that there is an ¢y > 0 such that for every N € R there is an n € N
such that n > N and an a € R such that |f,(a) — f(a)| > €. For the particular sequence

fulz) = and f(z) = 0, we put ¢ = 3. For any N € R, by the Archimedean

n2 + x2
Axiom, there is n € N such that n > N and for a = n we have
2
na n 1
— = | — = = — > .
|fn(a) f(a)l n2 + CL2 ‘ n2 _|_n2 2 — €0

. For the bounded sequence {b,}, let

by by b, " by,
S =bo4+ L4 2. g Nk
n=ht g oyt kz:%%

Define: {S,} is a Cauchy Sequence. Show that there is an L € R such that S, — L as
n — 00.

The sequence {S,} is said to be a Cauchy Sequence if for every € > 0 there is an N € R
such that
|Sk — Se| <€ whenever k > N and ¢ > N.

{b,} bounded means that there is B € R such that |b,| < B for all n. To show that {S,,}

B
is a Cauchy Sequence, choose psilon > 0 and let N € R be so large that oN < €. Now for

any m,? € N we may suppose m > £. If instead m = ¢ then |S,, — S¢|=0<eorifm < ¢
we may swap the roles of m and ¢ since |Sy, — S¢| = |S¢ — S| For any m > ¢ > N we have
by the triangle inequality and the formula for a geometric sum,

m bk L bk; m bk m |bk| m B
Sm=Sel= > 5r =2 56| =| 2 3|S 2 Hm S X @
k=0 k=0 k=(+1 k=(+1 k=t+1

?:25_’_1' 1_ <?<27N<€

i.mil B 1-(H)"" B B

E
I

=
Lol



