Math 3210 § 1. Third Midterm Exam Name: Golutions
Treibergs April 5, 2023

1. Let D C R, a € D and f : D — R. State the definition: f(z) is continuous at a in D. Using
Just your definition and not the combinations theorem, prove that f(x) = 7 1S continuous
x

at a € (0,00).
DEFINITION. f is continuous at a in D if for every € > 0 there is a § > 0 such that

|f(z) — fla)] <€ whenever z € D and |z — a| < 6.
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We show that f(x) = —= is continuous at any given a € (0,00). Choose ¢ > 0. Let
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d = min %, (i/g} Suppose that x € (0,00) such that |z — a| < §. Because § < g it
follows that 0 a
x:a+(x—a)2a—|ac—a|>a—52a—§:§. (1)
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2. Let I C R be an open interval and f : I — R. State the definition: f(x) is differentiable
at a € I. Suppose that f : R — R is differentiable at a € R. Using just your definition of
derivative and neither differentiation theorems nor chain rule, prove that g(z) = f(x)3 is
differentiable at a, and find ¢'(a).

DEFINITION: f is differentiable at « if the real limit, call it f'(a), exists:

f’(a) = lim f(l’) — f(a) )

z—a Tr—a

Suppose that f is differentiable at a. We show that the difference quotient for g has a finite
limit and determine its value. For z € I such that x # a,

9() —gla) _ f(@)° = f(a)® _ f(@) = f(a) [£(@)? + F@)f(@) + f(a)?]

r—a r—a Tr—a

Use the assumption that f is differentiable at * = a implies that f is continuous at a so
that f(z) — f(a) as * — a. Now by the main theorem for limits,

lim 90 =9 @ = Fa) [F@)? + F(@) (@) + F(0)?]

Tr—ra r —a T—ra Tr —a Tr—ra

= (@[ f(@? + f(@)? + f(@)?] = 3f(@)*f(a).

Thus a real limit exists and equals what we expected ¢'(a) = 3f(a)%f’(a).



3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a)

STATEMENT. Let f : [0,1] — R be continuous. Suppose {x,} is a sequence in [0, 1]

such that f(x,) = sup f(x) asn — oo. Then {x,} converges.

z€[0,1]
FALSE. Let f(z) = (2¢ —1)®. Then 1 = sup,coq f(z) = f(0) = f(1) so f
has two maximizing points. Now choose x, to alternate between these points x, =
1[(=1)"+1]. Then f(z,) = 1 converges to the supremum of f but {z,} does not
converge.
Here {x,} is a maximizing sequence. The fact that a continuous function on a closed
bounded interval is bounded and and takes its maximum is proved by choosing a
convergent subsequence of a maximizing sequence. But if there are two maximum
points, the maximizing sequence itself may not converge.
STATEMENT. If f,g:[0,1] = R are differentiable, f(0) = g(0) and f'(x) > ¢'(x) for
all z, then f(x) > g(z) for 0 <z < 1.
TRUE. Let h(z) = f(z)—g(z) so h(0) = 0. Then for any a € (0,1] h is continuous on
[0,a] and differentiable on (0,a). Because h'(x) = f'(x) — ¢'(x) > 0 for all x € (0,a),
h(z) is strictly increasing so h(a) > 0. It follows that f(a) > g(a) as claimed. To see
this, apply the Mean Value Theorem. There is ¢ € (0,a) so that

h(a) = h(0) + 1'(c)(a — 0) = 0 + h'(c)a > 0.

STATEMENT. Suppose [ : (0,1) — R is uniformly continuous. Then f is bounded.
TRUE. Since f is uniformly continuous on a bounded interval, it admits a continuous
extension f to the closed interval [0, 1]. The continuous function f on a closed, bounded
interval is bounded, hence f is bounded.

Several people argued by contradiction and tried to shaw that if f is unbounded then
f could not have been uniformly continuous, which was our homework problem 73[7].
Here is how that argument goes. The negation of uniform continuity is

DEFINITION. The function : (0,1) — R is not uniformly continuous if there is an
€0 > 0 such that for every § > 0 there are x,y € (0,1) such that |[x —y| < § but
[f (@) = f(y)] = €0

Assume f is unbounded. Let z1 € (0,1) be any number. Then choose a sequence as
follows. Assume z1,...,n, have been chosen. Then from unboundedness there is an
ZTnt1 € (0,1) so that |f(zp+1)] > 1+ |f(zy)]. It follows for j > ¢ from the reverse
triangle inequality, using |f(zx)| — | f(zk—1)| > 1 for all k that

|f () = @) = [|f ()] = [ f ()]

= (F @) = 1f @j—)) + (f (@) = [f(@i-2)]) + -+ ([ f @ip)] = | F ()]
= (If (@) = 1f(@j—0)) + (I f(@i—)] = [f(@j—2)]) + -+ (|f(@ir1)] = [f(2i)])
S1414+-+1l=j—i>1.

(2)

Now {z,,} C (0,1) so it is a bounded sequence. By the Bolzano Weierstrass Theorem,
it has a convergent subsequence {x,, } which is therefore a Cauchy Subsequence. Let
€o = 1. For any 6 > 0 there is a K € R so that

|Tp, — Tn,| <0 whenever j,i > K.

Take any two natural numbers j > i > K. For these we have |z, — ,,| < ¢ and by

(2),
|f(xnj) - f(xm)| >12>ep.



Thus f is not uniformy continuous.

Here is a third (direct) argument. By uniform continuity, for e = 1 there is a § > 0 so

that
If(z)— fly) <1 whenever z,y € (0,1) and |z — y| < 4. (3)

By the Archimedean Property there is an n € N such that % < §. Then there is the
bound )

|f(a:)|<n+’f (2)‘ for all x € (0,1). (4)
To see this, choose a € (0,1). consider the points

ykzi—i—w, fork=1,...,n.

2n n

These points are equally spaced between a and % whose distance apart is |yp—1 — yx| <
L <§. Thus, using (3),

]f(a) y (1) ] (o) — ) + (Fn) — F)) &=+ (Fns) — £ (5)]

2
< |f(yo) = fly)| + 1 f () = fly)l + -+ [f(Wn1) — f(yn)]
<141+--+1=n

Hence (4) follows

ri= s -1 (3)}+1(3)] = pr@-r(3)]+]7 (5)] vt (3)]

4. Let D C R and f, f, : D — R be functions. State the definitions:
(a) {fn(x)} converges pointwise to a function f on D as n — oc.

(b) {fn(x)} converges uniformly to a function f on D as n — co.

Determine whether the functions fn(z) = 1 — converge pointwise, converge uniformly,
or do not converge to a function f(zx) on (0, oo)x and prove your result.
DEFINITIONS.
(a) {fu(x)} converges pointwise to a function f on D as n — oo if for every z € D and
every € > 0 there is an N € R so that

[fulz) = f(z)| < e whenever n > N.

(b) {fn(x)} converges uniformly to a function f on D as n — oo if for every € > 0 there is
an N € R so that

|fu(z) = f(z)| <€ whenever n > N and x € D.

1
fol(z) = T g converge pointwise to f(x) on (0,00) where
1, if0o<z<l; ) g o<z <1
fz) = %, ifz=1; since nh—{lgol—‘,—gj" = ?11, if o =1;
0, ifl<u. s, ifl<ua

The convergence is not uniform. The functions f,(z) are continuous on (0,00). If the
convergence were uniform, then the uniform limit of continuous functions would have to be



continuous, however, the limiting function here, which would have to be the same as the
pointwise limiting function f(z), is not continuous at « = 1.

Another argument is to consider the sequence {x,} C (0,00) given by
Ty = 2.

For this sequence
1

fn(@n) — f(zn) = 3

for all n, which is not tending to zero as n — oo which would be the case were the conver-
gence uniform.

. Let f : R — R is continuous and f(r) = 0 at each rational number r € Q. Prove that
f(x) =0 for all x € R.

We prove that f(a) = 0 for any real number a € R. The easiest way is to use the sequential
characterization of continuity. Since f is continuous at a, for every real sequence {z;} C R
sucn that x,, — a as n — oo we have

fla) = lim f(z,).

n—0o0

Now, the rational numbers Q are dense in R, thus we can choose a sequence of rational
numbers r, € Q such that r,, — a as n — oo To see this, for every n € N, by the density
of rationals, there is a rational number in every open interval, so we choose a rational
rn € (a,a + %) Since |a — r,| < % we have r, — a as n — oco. Applying the sequential
characterization to this sequence,

f(a) = lim f(r,)= lim 0=0

n— oo n—oo

because, at rational numbers f(r,) = 0.

An alternative argument uses only the definition of continuity. Choose a € R. Since f is
continuous at a, for every € > 0 there is a d > 0 such that

[f(a) — f(x)] <e whenever z € R and |z — a| < 0.

By the density of rationals, there is a rational number r such that |r — a| < 6. Hence for
this 7

[fla) = f(r)] <e.
However, since f vanishes at rational numbers, f(r) = 0. Thus

[f(@)] <e.

Since this holds for every e > 0, we conclude that f(a) = 0.



