Math 3210 § 1. Second Midterm Exam Name:
Treibergs March 1, 2023
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1. Let a, = r . Define: L = lim a,. Find L using limit laws.

Prove using just your definition that L = lim a,,.
n—oo

A real number L is the limit L = lim a, if for every € > 0 there is an N € R such that
n— oo
la, — L| <€ whenever n > N.

Using the root law, quotient law and sum law,
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To prove that lim a, = 1, choose ¢ > 0. Let N = — — 1. For any n € N such that n > N
€
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2. Define the real sequence {a,} recursively by a; = 1 and by ap41 = 6++/a, forn > 1. Show
that {a,} is convergent.

We show that {a,} is increasing and bounded above. Thus, by the Monotone Convergence
Theorem, a,, — a as n — oo for some a € R.

To show that {a,} is increasing, note that f(x) = 6 + /7 is increasing on [0, c0). Argue by
induction to show that 1 < a, < an+1.

For the base case, we see that
as = fla)) =6+ar =6+V1=7>1=aq.

For the induction case, assume for some n that 1 < a, < apy1. 1 < an41 is immediate.
Applying f we see that

an+2 = f(an-i-l) > f(an) = On+1
since f is increasing and both a, and a,41 are in the domain of f. Thus it follows by
induction that 1 < a,, < an41 for all n.

To show that {a,} is bounded above, we shall show thqt a,, < 9. In fact any larger number
will work also. Arguing by induction, the base case follows since we are given a; =1 < 9.

For the induction case, assume that a,, < 9 for some n. Then from before a,, > 1 so a,, is
in the domain of f and

Ungr =64 /a, <6+9=09.
Thus it follows by induction that a,, <9 for all n.



3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a)

STATEMENT. Let I,, be a sequence of bounded intervals such that Iy D Iy D ---. Then

AL
n=1

FALsSE. If the intervals were closed then the answer would have been “true” by the
Nested Intervals Theorem. But being closed was not specified, so if we take I, =

1 o0
0,- ) th I, = 0.
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STATEMENT. No real sequence {ay} satisfies limsup a,, = —o0.
n—oo

FALSE. Take the sequence a,, = —n which converges to —oco. For the lim sup, we note
that

sn=sup{ar : k>n} =-n
so that

limsupa, = lim s, = —occ.

n—00 n—oo

STATEMENT. Suppose the real sequence {a,} is not bounded above. Then there is a
subsequence a,, — 0o as k — oo.

TRUE. Since the sequence is not bounded above, for every M € R there is an n
such that a, > M. We select a subsequence of larger and larger terms. The only
technicality is to arrange that the terms occur in increasing order in the sequence.
Start by choosing n1 € N so that a,, > 1. Then choose ns so that

an, > max{ay,...,an,,2}.

Since ay,, is larger than all ay, . .., ay,, the ng cannot be any of 1,2, ..., n; thus ng > n;.
Also ay, > 2. Continue in this fashion. Suppose that ny < ... < n; have been chosen
such that a,; > j. Then choose nj;1 € N so that

Qn, ., > max{al,...,an;,j+ 1}

Since ay,, is larger than all aq,...,a,; the nj; cannot be any of 1,2,...,n;, thus it
must satisfy n;1 > nj;. Also a,,,, >j+1.
Thus we have constructed a subsequence a,; > j which tends to co as j — oo.



4. Let {ap} and {b,} be a real sequences which converge to real numbers a,, — a and b, — b
as n — oo and that for some N € R,

a, < b, whenever n > N.

Using just the definition of convergence, prove that a < b.

We show that for every € > 0 we have b — a > —¢ which implies b — a > 0. Choose ¢ > 0.
Since a,, — a and b,, — b as n — oo, there are N1 and N5 in R so that

€
lan, —a|] < =,

5 whenever n > Ny;

|bn, — b| < %, whenever n > Na.
By the Archimedean Property, there is n € N such that n > max{Ny, N3, N}. For this n
b—a=by+(b—bp) —an—(a—an) > bp — an — |b—bn| — |a — an| >Of%f§:75.

We have shown that b — a > —e¢ for every € > 0 which implies b —a > 0.
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5. Define: {x,} is a Cauchy Sequence. Let x,, = Z %().

k=1
Prove that {x,} is convergent.

A real sequence {z,} is a Cauchy Sequence if for every € > 0 there is an N € R such that

|Tm — 6| < €, whenever m > N and ¢ > N.

Observe that
|1 —2cos(k)| < 1|+ |2cos(k)] <142 =3. (1)

Also, the factorial satisfies
k! > 2kt (2)

for all & € N. We can see this by induction. For the base case 1! = 1 = 2'~!. For the
induction case, assume that k! > 2k=1 for some k € N. Then since k > 1,

(k+ 1= (k+1) -kl >2.2F1 = oktD1,
Hence by induction, k! > 2F~1 for all k € N.
To prove that {z,,} converges we show that it is a Cauchy Sequence, hence convergent.

Choose € > 0. Let N € R be such that

and ¢ > N. Then if m = £ we have |z,, — x¢| = 0 < e. If m # ¢, without loss of generality
we may assume m > f. Otherwise, we may swap the roles of m and ¢. We have by the
triangle inequality, (1), (2) and replacing the dummy index by k = ¢+ 1+ j,

7 = €. Suppose that m, £ € N such that m > N
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We have used the formula for the sum of a geometric series
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