MATH 3210 § 1 FIRST HOMEWORK ASSIGNMENT  Due Friday,
A. Treibergs    August 29, 2008.


Read Anne Roberts' "M3210 Supplemental Notes: Basic Logic Concepts" and Arthur Mattuck's "Introduction to Analysis", Appendices A-B.
  • Please hand in the following problems.
    • A.  Construct a truth table for the following statement.

            [ P ∧ ( P ⇒ Q ) ] ⇒ Q.

    • B.  Verify using truth tables that

            [ P ∧ ( Q ∨ R ) ]

          is equivalent to

            [ (P ∧ Q ) ∨ (P ∧ R) ].

    • C.  Determine the truth value of each statement assuming that x, y, z are real numbers.
      • ( ∃ x ) ( ∀ y ) ( ∃ z ) ( x + y = z ) ;
      • ( ∃ x ) ( ∀ y ) ( ∀ z ) ( x + y = z ) ;
      • ( ∀ x ) ( ∀ y ) ( ∃ z ) [ ( z > y ) ⇒ ( z > x + y ) ] ;
      • ( ∀ x ) ( ∃ y ) ( ∀ z ) [ ( z > y ) ⇒ ( z > x + y ) ] .
    • D.  Write formally, with quantifiers in the right order. Negate the sentence and interpret.
      "Everybody doesn't like something but nobody doesn't like Sara Lee."