Math 3210 § 2. Sample Final Exams Name: SomeGolutions
Treibergs ar December 12, 2009

More Problems.

1. Suppose f : [=5,00) — R is defined by f(x) = /5 + x. Using just the definition of differ-
entiability, show that f is differentiable at a =5 and find f'(4).
We show that the limit of the difference quotient exists.
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2. Suppose f : (a,b) — R is uniformly continuous. Show that the limit exists: lirlr} f(x).

Proof. i.e., a uniformly continuous function on (a,b) has a continuous extension to (a, b].
This was a theorem in the text, but the problem asks us to prove it. Uniformly continuous
means for every € > 0 there is a ¢ > 0 so that |f(z) — f(y)| < € whenever z,y € (a,b) satisfy
|z —y| < d. Let {z,,} be any sequence in (a, b) such that x,, — 0 as n — oco. We first show
that {f(z,)} is a Cauchy Sequence. To see it, choose € > 0. By uniform continuity, there
is a & > 0 so that |f(xn) — f(zr)| < &€ whenever |z, — zx| < §. But {x,} is convergent,
hence Cauchy. Thus there is an N € R so that |z, — x| < § whenever any m, k € N satisfy
m > N and k > N. Hence |f(z,) — f(zx)| < € whenever any m, k € N satisfy m > N and
k > N. But this says {f(x,)} is a Cauchy Sequence.

Since {f(zn)} is Cauchy, it is convergent, so let L € R be the limit: f(z,) — L as n — oo.
We have found a subsequence converging to L. The rest of the argument is to show that
continuous limit f(z) — L as x — b—. To this end, we show that the definition of limit
is satisfied: that for all € > 0 there is a 6 > 0 so that |f(z) — L| < ¢ for all x € (a,b)
such that b —§ < x < b. Choose € > 0. By uniform convergence, there is a § > 0 so that
|f(z) — f(y)| < § whenever z,y € (a,b) satisfy |x — y| < §. This is the 0 needed for the
limit. Now choose any « € (a, b) such that b— 3 < x < b. Since f(z,) — L as n — oo, there
is an N € R so that [f(z,) — L| < § whenever n > N. Finally, since zx — b as k — oo,
there is a k € N so large that £k > N and b — 6 < xp, < b. By the usual sneaky adding and
subtracting trick and the triangle inequality,

F(@) = Ll = 1(2) = flan) + f(@n) = L < 1 (@) = flan)| +|fla) = LI < 5 + 5 ==,

by uniform continuity since both x,z, € (b — 6,b) so |x — zx| < § and by the Cauchy of
f(zy). Thus f(z) — L as ¢ — b—.

3. Give an example of a function f : R — R that is differentiable at a = 0 but not for any
other a # 0. Prove that your function has this property.

Proof. We modify the Dirichlet function that is not continuous at any point. Let

22, if x € Q is rational,
flx) = . o
0, if € R\Q is irrational.



If @ # 0 then f is not continuous at a, hence not differentiable at a. Indeed by the density
of rationals and irrationals, there are sequences y,, € Q and z, € R\Q such that y, — a
and 2, — a as n — oo. Thus f(y,) = y2 — a® as n — oo but f(z,) =0 — 0 as n — oo.
Since two subsequences converging to a result in inconsistent limits (a? # 0), the function
f is not continuous at a.

The differentiability at a = 0 follows because f is squeezed between a “rock and a hard
place.” For all z € R, |f(x)| < 22. Tt follows that the difference quotient converges to zero.
Indeed, choose € > 0 and let 6 =e. Then for any z € R, if 0 < | — 0] < § then
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Thus f is differentiable at a = 0 since the limit exists: f'(0) = lim M =0.
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. Let f :]0,00) — R be a continuous function which is differentiable on (0,00). Suppose that
£(0) =0 and |f'(x)] < M for all x € (0,00). Show that for all x > 0,

[f(z)| < Mz|.

Proof. 1f 2 =0 then |f(0)| = |0] < M|0|. Thus suppose 2 > 0. Because f is continuous on
[0, 2] and differentiable on (0, ), my the mean value theorem, there is ¢ € (0, x) so that

[f(@) =1f(@) = FO) = |f'(e)(@ = 0) = [f'(e)] |x| < Mz
because |f’(c)| < M holds for any ¢ > 0.

. Show that there is a function f : R — R which is differentiable on R but f'(x) is not
continuous on R. Prove that your function has this property.

Proof. Let

z? sin (%) , ifx#£0,
0, if x =0.

For all x € R, this function is squeezed | f(x)| < 2. As in problem (3), f is differentiable at
zero and f/(0) = 0. For x # 0, the function is the product and composition of differentiable
functions, whose derivative is gotten by the product and chain rules

o1 i () e (1),

For the sequence z,, = 5 — which tends to zero, we have f’(z,) = —1 so that f'(z,) — —1

as n — o0o. As this is not f'(0) = 0, f’ is not continuous at 0.

. Suppose f : (a,b) — R is differentiable on (a,b). Suppose x,y € (a,b) and that m is any
number between f'(x) and f'(y). Then there is a z between x and y such that f'(z) = m.
In other words, the mean value property holds for the derivative, even though the derivative
may not be a continuous function.

Proof. Choose z,y € (a,b). For convenience, let us assume that z < y and f'(z) < m <
f'(y). Other cases are similar. Then the function g(z) = f(x) — ma is continuous on [z, y]
and differentiable on (a,b). Also ¢'(x) = f'(z) —m < 0 and ¢'(y) = f'(y) —m > 0.

As in the homework problem, it follows that for z € (z,y) close enough to z, g(z) < g(x) and
for z close enough to y, g(z) < g(y). To see this, let’s do the y case. Since g is differentiable
at vy,

J(y) = lim 9(2) —9(y)
2—y— z—



so for any € > 0, there is a § > 0 so that for any z € (z,y) so that y — § < z < y we have

Applying this to e = ¢'(y) > 0, if z € [z, y] satisfies y — § < z < y then

9(2) = g(y) + (g(z)_g(y) — g’(y)> (z—y)+ 9 W) (z—y)

g Wz =yl +dW(=—-y)

z—y
g +9 Wz —yl+9' W) (z—y) = g(y).

Thus it follows that there are points in the interval z; € [z,y] such that g(z1) < g(z) and
g(z2) < g(y). But since g is continuous on [z, y], by the minimum theorem, there is ¢ € [z, y]
so that

g(c)= inf g(2).

z€[zy]
But ¢ cannot be the endpoint because g(c¢) < min{g(z1),9(22)} < min{g(z),g(y)}, thus

¢ € (x,y), where g is differentiable. It follows from the theorem about the vanishing of the
derivative at a minimum point and the definition of g,

flle)=m=4g'(c)=0
so that at the intermediate point f’(c) = m, as desired.

. Which is bigger e™ or w¢?

Proof. Consider the function f(z) = e *2°. It is continuous on [0,00) and differentiable
on (0,00) since we use logs and exponentials to define f(x) = exp(g(x)) where g(z) =
—z +elnz. Since g'(z) = —1+ £, it follows that g’(z) > 0 for x € (0,e) and g'(x) < 0 for
x € (e,00). Hence g(e) = 0 > g(m) by the corollary to the Mean Value Theorem relating
decreasing to derivatives. Because exp is a strictly increasing function, it is increasing and
decreasing on the same intervals as g. It follows from e < 7 that

1= f(e) = exp(g(e)) = exp(0) > exp(g(m)) = f(7) = —
so ¢ < e’.

. Suppose that [ : (a,00) — R is differentiable and that f'(x) — 0o as x — oco. Then show
that f is not uniformly continuous on (0,00).

Proof. By negating the definition, we are to show f is not uniformly continuous on (a, o)
which means there exists an € > 0 such that for every ¢ > 0 there are x,y € (a,00) such
that |z —y| < 0 and |f(z) — f(y)| > . We show this is true for e = 1. Choose § > 0. Since
f'(z) — oo, there is R € R so that f'(c) > % whenever ¢ € (a,00) satisfies ¢ > R. Now
pick an z € (a,00) such that x > R. Let y =z + g. We have y € (a,00) and it satisfies
ly— x| = 2 < 5. Because f is continuous on [z, y] and differentiable on (z,y), by the Mean
Value Theorem, there is a ¢ € (z,y) such that

[f(y) = f@) = f )y —)| = f()y —z) >

because ¢ > = > R.



9. Let f: [a,b] — R be an integrable function. Then f? is integrable on [a,b] and

b 2 b
( / f(x)dx> <(b—a) / £ () de. (1)

Proof.  First, for all z € [a,b], infycpap) f < f(2) < supefyy f 50 0 < f3(x) < M where
M = max{|infycap) fI?, | Sup,ef ) fI*}- Thus f is bounded.

Next we show f2 is integrable using the theorem that says g is integrable om [a,b] if and
only if for every € > 0 there is a partition P = {a = 2o < 21 < -+ < x,, = b} of [a,b] so
that U(g,P) — L(g,P) < €. Here the upper and lower sums are

Ug,P) =Y Mi(g) (wx — k1),  L(g,P) =Y _ mi(g) (wx — 2x_1)
k=1

k=1
where
Mi(g) = sup  g(z),  mi(g)= inf g(z).
z€[Th_1,2k] T€[Tk-1,Tk]

For any partition, consider three cases for a subinterval: My < 0, mi < 0 < M and
0 < myg. In the first case for z € [xg_1, 24,

my(f) < fz) < Mi(f) <0

so that
0 < Mi(f)? < f2(x) < my(f)?

which implies

My (%) =mu(f?) < m(f)?=Mi(f)? = Imp(F)+Mi(F)] I (f)=Mi(f)] < 2M (Mi(f)=ma(f))-

so that

0 < f2(x) < max{my ()%, Mi(£)*} < (Mi(f)=mi(£))? < (M ()| (H)) (M (f)—ma(f))
which implies

My(f?) = my(f?) < My(f?) < 2M(My(f) — my(f))-
In the third case, for = € [x_1, zx],

0 <mi(f) < f(x) < Mi(f)

so that
0 < mi(f)? < f2(z) < My(f)?

which implies
My (f2)=mi(f?) < My (f)?=mi(£)? = [M(f)+me ()] IMk(f)=mr(f)] < 2M (M. (f)=mi(f))-

Hence, for any subinterval [zy_1, 2k in every case we have

Mi(f?) — mi(f?) < 2M (Mg (f) — my(f))-



To prove f? is integrable, choose € > 0. Since f is integrable, there is a partition P such
that

€
Then the same partition applied to f2 yields
U(f*P)— Mk — mi(f?)) (e — x1-1)

M (M (f) — mp(f)) (xr — Tp-1)

( (f,P)— (fa ))
2Me
<2M+1

i Ms i M:

<e

Thus f2 is integrable.

Inequality (1) is known as the Schwartz Inequality. Its proof is a little trick. The inequality
is trivial if a = b, so we assume a < b. For each t € R the function (f(x) + t)? is integrable
since it is the square of an integrable function f(z)+¢. It is nonnegative, thus for all ¢t € R,

b b b b
0§/(f(.’17)—|—t>2dl‘=/ f(x)de—i—Qt/ f(x)dm+t2/ dr = a + 26t + 2.

The quadratic function is minimized when ¢ = —%. Substituting this ¢,
28% | 4B B ’ ’
e N L e W Y
gl 8 a a \Ja

which is the Schwartz Inequality (1).

10. Let fn, f : [a,b] — R be functions defined on a closed, bounded interval. Assume that f,, are
bounded and integrable, and that f, — f uniformly as n — oo. Then f is integrable and we
can interchange limit and integral

Tim. ( / b Fulz) dx) - / ’ f(z) dz. 2)

Proof. First, we show f is bounded. Since f,, — f converges uniformly, for every € > 0,
there isan N(e) € Rso that if n € Nsatisfiesn > N(e¢) and = € [a, b], then |f,(z)—f(z)| < e.
Taking € = 1, and fix an n € N large enough so n > N (1), then any z € [a, b] satisfies

[f (@) = |fn(@) + (@) = fu(2)] < [ful@)] + [f(2) = ful2)] < sup |fn(2)] +1
which is finite because f, is bounded. Thus f is bounded.

Next we show f is integrable. For this purpose, we use the theorem that says f is integrable
om [a, b] if and only if for every € > 0 there is a partition P = {a = zo < 1 < -+ < x,, = b}
of [a,b] so that U(f,P) — L(f,P) < e. Here the upper and lower sums are

n

U(f,P) =Y My(f) (wx —2r1),  L(fP) =Y malf) (wn — xp-1)
k=1

k=1



11.

where
My(f)= swp @),  me(f)= _inf f(z).
TE[TK—1,Tk] TE€[Tp_1,Tk]
Now choose € > 0. We approximate f by an fy, then choose a partition that is good for f,
and then show it is good for f. Since the convergence is uniform, there is N € R so that
whenever ¢ € N satisfies £ > N and every x € [a, b] we have

3

|fe(x) — f(z)] < 6h—a)+6 (3)

We pick one such ¢ to show integrable. Thus, for every « € [a, b],

3 £

fo(z) - 6(b—a)+6 (@) < folw) + 6(b—a)+6

Now f; is integrable, so by the theorem, there is a partition of P = {a =zg < 21 < -+ <
ry, = b} of [a,b] so that U(f,,P) — L(f,,P) < §. Hence taking inf and sup over [xj_1, ],

€ . € .
mk(fZ) - m < wE[Ilkn—fl,CCk] fé B m < $€[w11£f1,wk] f B mk(f%
€
‘Mdﬁ:}qifmufgxqifwuﬁ+6@—a%+6SN&U&+6@—G%+5
It follows that R
My (f) = mi(f) < Mi(fe) —m(fe) + 3b—a) 13
Summing over the subintervals,
U(f,P) = L(£,P) = Y _(Mi(f) = ma(f)) (w — 1)
k=1
- €
< ; (Mk(fl’) —my(fe) + 36—a) 1 3) (Th — 1)
e n
=U(eP) = Lt P) + 35— o3 ;m — zk1)

Hence f is integrable.

To show that the limit of the integrals is the integral of the limit, choose ¢ > 0 and let
N € R as above. Applying (3), for every n > N we get

/abf(z)dfv/abfn(w)dl' S/ablf(w)fn(x)lde/b £ do cb-a) _

L 6(b—1)+6 6(b—1)+6
Thus we have shown (2).

T dt
Define logx = / " for x > 0 as usual. If x = €Y is the inverse function of y = logz,
1
d
show that €Y is differentiable and d—ey =eY.
Y

The differentiability of F(xz) = logz follows from the Fundamental Theorem of Calculus,
which says that if f is integrable on [a, b] for any 0 < a <1 < b < oo then F(2) = [ f(¢) dt



12.

is uniformly continuous on [a, b] and if f is continuous at z € (a,b), then F is differentiable
at z and F'(z) = f(z). In our case f(t) = % so it is continuous, hence integrable on [a, b]
and since f is continuous at z, F'(z) = 1.
Since F'(z) > 0, it is strictly increasing, and since F(z) is continuous, the inverse function
theorem for continuous functions says that F~! = exp : [log a,logb] — R is continuous and
strictly increasing. We have defined F' on (0,00) (by taking a small and b large enough).
So choose w € F((0,00)) and let F(z) = w be the corresponding point inverse to w. By
the theorem on derivatives of inverse functions, which says, if F' is monotone on (0, co) and
differentiable at z € (0,00) and F’(z) = L # 0, then the inverse function is differentiable at

w = F(z) and :

d d 1 1
—ey = — _1(y) = :7:Z:F_1(w):ew
dy |, dy y—w F'(2) 1)z
) . ° dt
Does the improper integral —— converge? Why?
50 (t2 + t4)§

There are four limits: at —oo, 0—,04 and oco. Split the integral into four parts

-1 0 1 [e%S)
11+IQ+I3+I4:/ +/ +/ +/
—00 -1 0 1

Use the comparison theorem for improper integrals. If f, g are integrable on all subintervals

and if |f(t)] < g(¢) for all ¢ and if the improper integral /g(t) dt converges then the
I
improper integral / f(t) dt converges. For the interval Iy and I3, we have for 0 < |t| < 1,
I

1 1
t))=——F < -5 =gt
0= oy < g =90
and the improper integral conveges
1 1 1
dt dt 1
/ gydt= [ &= tim [ L= lim [315%} — lim [3 - 35%] —3.
0 0 t3 e—0+ e t3 e—0+ e e—0+
Thus the improper integral I3 exists. Because g(t) is an even function

0 0 € 1
dt dt dt
/ g(t)dt = / — = lim — = lim - =3
1 113 e—0— _1 13 e—0+ e 13

from before. Thus the improper integral Is exists also.

For the interval I; and I, we have for 1 < |¢|,

1 1
fOl=——7F <5 =90
0= oy < g =90

and the improper integral conveges
> > dt Rdt R
/ g(t) dt :/ e tim [ L= lim [7375*%] = lim [3 - 3R’%} = 3.
1 1 t3 R—oo 1 t3 R—o0 1 R

Thus the improper integral I, exists. Because g(t) is an even function

-1 -1 -1 R
dt dt dt
—o0 —oo 13 R—oo J_R t3 R—oo /1 t3

from before. Thus the improper integral I; exists also.



13. Show that if the limit hm u = L exists and if Zak converges absolutely then Zbk

a
> |ax| k=1 k=1
converges absolutely.

The existence of the limit of nonnegative numbers so L > 0 shows that the series can be
compared. There is an N € R so that ax # 0 and

whenever k£ > N. Hence, for all £ > N,

o] < (L + 1)lax|.

o0 o0
Hence, by the regular comparison test, Z |b| is convergent because Z(L + 1)]ag] is

k=1 k=1
convergent by assumption.

(k!)?
D (2k)!

oo
14. Determine whether Z(— 1s absolutely convergent, conditionally convergent or di-
k=1

vergent.

To check absolute convergence, use the ratio test.

((k4+1)1)?

. arsal L TeErmr L (R+ D (B4+ 1) (2k)! (k +1)? 1
= = —_— = . 1 _— = —,
Pl Tan] — roee G oo (2k+2)! KLkl koo (2k+2)(2k+1) 4

Since p < 1, the series is absolutely convergent.

15. Let at = a if a > 0 and a™ = 0 if a < 0. Similarly, let a= = min{0,a}. Show that if

o0
A= Zak is conditionally convergent, then the series
k=1

oo (o)
— + — -
P=>"af, M=) q
k=1 k=1

are both divergent.

Argue by contradiction. We assume that A is conditionally convergent and both P and M
are not divergent. Thus we may assume that one of the sums, say P, is convergent. Using
the fact that ax = az + a, , we have the series of differences from two convergent series is
convergent and converges to the difference, so

oo oo oo oo
:E ay E k—ak E ak—g a;j: - P
k=1 k=1 k=1 k=1

converges also. Similarly if M converges then so does P. Thus both P and M converge.
It follows that A is absolutely convergent. This is because |ay| = a; — a;. Again, the
convergence of the sum of differences follows from the convergence of the individual series

(o) o0
Z|ak| Z —a;):Za',;—Za;:P—M.
k=1 k=1

k=1

Thus we have shown that A is absolutely convergent, hence not conditionally convergent.



16. Show that if A = i ay, is convergent and {by} is bounded and monotone, then A = i akby
is convergent. (Tl;;; is known as Abel’s Test.) =
This one relies on a trick called Abel’s Summation by Parts. If Sy = zk:aj is the partial
sum, then =

Z apby = Spbpi1 + Z Sk(bk — bk+1). (4)
k=1 k=1

To see this, observe that for k € N,

apby = (Sk — Sk—1)bx = Sk(bk — bry1) + (Skbr+1 — Sk—1br)

where we understand Sy = 0. Now summing gives (4), noting that the second parenthesized
term telescopes.

Since {b,} is bounded and monotone, it is convergent: b, — B as n — oo. Since A is
convergent, S, — A as n — oo. Thus the first term in the partial sum (4) converges to a
limit S;,b,41 — AB as n — oc.

o0 n
The sum B = Z(bk — by—1) is convergent because b, = Z(bk —bg—1) = Basn — o0

k=1 k=1
where we have taken by = 0. Since {b,} is monotone, the summands have a fixed sign and

the convergence is absolute. Finally, since S, — A as n — oo, it is bounded. This implies
that the last sum in (4) converges.

To show T, = Z Sk(br — br+1) tends to a limit as n — oo, suppose the bound is | S| < M
k=1

for all k. Now we check the Cauchy Criterion. Choose ¢ > 0. By the convergence of {b,},

there is an N € R so that m, ¢ > N implies |by,+1 — bey1| < So for any m, ¢ > N so

that ¢ > m,

_£
M+1-

14
T = Tel = | Y Sk(br — biya)

0
< > 1kl bk — b

k=m+1 k=m+1
4 4
< Z M|by, — by1| = Z M (b, — by1)| = M|bpmy1 — bet1] < e
k=m+1 k=m+1

Thus we have shown {T7,} is Cauchy, hence convergent.



