Math 3210 § 2. Third Midterm Exam Name: SomeGolutions
Treibergs ar November 6, 2009

More Problems.
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1. Show that the sinc function f :[0,1] — R is continuous, where f(x) = x fo>0,
1, ifx=0.
y
2571
) 7.5 T om—— 25 0 25 s 75 1

=2.5]

Figure 1: Sinc Function

Proof. We shall take as our starting point geometric inequalities satisfied by sine. P =
(cosz,sinx) is the coordinate of a point on the unit circle. The horizontal distance of P
to the y-axis is at most one so |cosz| < 1. The distance of P to the z-axis is the vertical
distance, which is |sinz|. This is less than the distance around the circle from (1, 0) which
is |z|. On the other hand, for |z| < 7, the shortest curve from the positive z-axis to the
ray OP outside the unit circle is the arc of the circle of length |z|, which is less than the
vertical path above (1,0) which has length |tanz|. Thus, for |z| < 7
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Thus for 0 <z < 7,
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Thus for 0 <z < 7,
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The inequality between sines at two numbers will follow later on in the course from knowing
that sine has bounded derivative, or that it is the integral of a bounded function. For now
we will content ourselves with the inequality above and trig identities. For z,y € R, using
the addition formulae,

sina — siny = sin (*5¢ + *5¥) —sin (3¢ — 5Y)

Thus for z,y € R,

|sinz — siny| < 2|cos (L52)| [sin (352)| < 2-1- |22 | = |z —y|. (3)

Finally, the inequality between sinc functions at different points follows by sneaking in a
cross term. For 0 < z,y, by (3),
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Now the main part of the proof may begin. Choose a € [0,1]. We argue two cases: a = 0
and a > 0 seperately.

In case a = 0, choose € > 0. Let § = /2¢. If = € [0, 1] such that |a — 2| < §, then if 0 < x,
by (2),

F@) = fla) = 22 —1] < 5 < OB — e,
If =0 then |f(z) — f(a)] = |1 — 1| =0 < e. Thus for every z € [0,1] with |a — z| < § we
have |f(z) — f(a)| < €, completing the proof that f is continuous at a = 0.

In case a > 0, choose € > 0. Let 6 = min{a, & }. Then choose x € [0,1] so that |z —a| < 4.
But this impliesz =a+z—a>x —|a—z|>a—a=0so x> 0 also. By (4),

F(2) — fa)] = |sme — sina] < 2 pp o < 2 5 =,
completing the proof that f is continuous at a > 0. O
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. Show that the sinc function g(x) =

is uniformly continuous on (0,1).

We observe that the function f : [0,1] — R from Problem (1) is an extension of g, i.e.,
f(z) = g(x) for all x € (0,1). We showed there that f is continuous on [0,1]. By the
theorem that say that any function f : I — R that is continuous on a closed and bounded
interval is also uniformly continuous, we have that f is uniformly continuous on I = [0, 1].
But if a function is uniformly continuous on a set, it is automatically uniformly continuous
on a subset. Thus f is uniformly continuous on (0,1). But g = f when restricted to (0,1),
so0 ¢ is uniformly continuous on (0, 1).
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. Using only the definition of uniform continuity, show that the sinc function g(x) = 18

x
uniformly continuous on (0,1).

The continuity proof from problem (1) cannot be used because the ¢ there depends on a
and tends to zero as a — 0. If 6 had a positive minimum on [0, 1] then that would prove
the uniform continuity. In fact, by using our inequalities more carefully, we can recover a
uniform § rather like the proof that /z is uniformly continuous on [0, c0).
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To begin the proof, choose € > 0. Let § = min{g, 17+ Now choose z,y € (0,1) such
that |z — y| < §. One of the two numbers is smaller, so after swapping if necessary, we

may suppose that z < y. The argument will done in two parts: in case x < é or in case
Ve
Tz 5.

In case ¢ < %, wehavey=zt+y—az<z+ly—z| <z+d < §+§ = /e. The
inequalities (1) say
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In case z > so also y > & > = we use (4) instead.
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Thus we have shown in both cases that if z,y € (0,1) such that | — y| < ¢ then
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hence g(z) is uniformly continuous on (0, 1).



