
Math 3210 § 2.
Treibergs

Second Midterm Exam Name: Solutions
October 5, 2011

1. Let {an}n∈N be a real sequence and L ∈ R. State the definition: L = lim
n→∞

an. Guess the limit.

Then use the definition of limit to prove that your guess is correct. L = lim
n→∞

√
n

1 +
√

n
.

The real sequence {an} converges to L ∈ R if for every ε > 0 there is an N ∈ R such that
|an − L| < ε whenever n > N .

We guess L = 1. Choose ε > 0. Let N = ε−2. For any n > N we have

|an − L| =
∣∣∣∣ √n

1 +
√

n
− 1
∣∣∣∣ = ∣∣∣∣√n− 1−

√
n

1 +
√

n

∣∣∣∣ = 1
1 +
√

n
<

1√
n

<
1√
N

=
1√
1/ε2

= ε.

2. Let E ⊂ R be a nonempty subset and m ∈ R. State the definition: m = inf E. (m is also
called the greatest lower bound of E.) Consider the set E =

{p

q
: p ∈ N and q ∈ N

}
. Find inf E

and prove that it is the infimum.

m is the greatest lower bound of a nonempty set E if (1) it is a lower bound, namely
(∀x ∈ E)(m ≤ x) and (2) it is the greatest of lower bounds, namely (∀ε > 0)(∃x ∈ E)(x < m+ε).

We show that 0 = inf E where E = {p/q : p, q ∈ N}. To see that 0 is a lower bound choose
x ∈ E. Hence x = p/q for some p, q ∈ N. But p > 0 and q > 0, hence q−1 > 0 which implies
x = pq−1 > 0. Thus we have shown 0 ≤ x for all x ∈ E.

To see that 0 is the greatest of lower bounds choose ε > 0. Hence ε−1 > 0. By the Archimedean
Property, there is an q ∈ N so that q > ε−1, hence 1/q < ε. Let p = 1. Then there is x ∈ E,
namely x = p/q = 1/q < ε. Thus we have shown for any ε > 0 there is x = p/q ∈ E such that
x < 0 + ε so no number greater than zero is an upper bound.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

a. Statement: If x, y ∈ R are such that x 6= y and y 6= 0 then
∣∣∣∣y + x

y − x

∣∣∣∣ ≤ |y|+ |x||y|
.

False. Let x = 1, y = 2 so
∣∣∣∣y + x

y − x

∣∣∣∣ = ∣∣∣∣2 + 1
2− 1

∣∣∣∣ = 3 which exceeds
|y|+ |x|
|y|

=
|2|+ |1|
|2|

= 1.5.

b. Statement: Let {an} be real, convergent sequences such that an is irrational for all n ∈ N.
Then lim

n→∞
an is irrational.

False. Let an =
√

2
n

. Then an is irrational as it is the product of an irrational
√

2 and a

nonzero rational 1/n. However an → 0 as n→∞ but 0 is rational.

c. Statement: If f : R→ R be a bounded function, then inf
R

f ≤ sup
R

f .

True. Let E = {f(x) : x ∈ R}. Then f(0) ∈ E. Since inf
R

f = inf E is a lower bound for E

we have inf
R

f ≤ f(0). Since sup
R

f = sup E is an upper bound for E we have f(0) ≤ sup
R

f . Thus

inf
R

f ≤ f(0) ≤ sup
R

f .
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The Axioms for a Field F with binary operations + and ·.
A1. x + y = y + x for all x, y ∈ F .;

A2. x + (y + z) = (x + y) + z for all x, y, z ∈ F ;

A3. There is an element 0 ∈ F such that 0 + x = x for all x ∈ F ;

A4. For every x ∈ F there is an element −x such that x + (−x) = 0;

M1. xy = yx for all x, y ∈ F .;

M2. x(yz) = (xy)z for all x, y, z ∈ F ;

M3. There is an element 1 ∈ F such that 1 6= 0 and 1x = x for all x ∈ F ;

M4. For each non-zero x ∈ F there is an element x−1 such that x−1x = 1;

D. x(y + z) = xy + xz for all x, y, z ∈ F .

4. Let x, y 6= 0 be elements of the field F . Hence also xy 6= 0. Using just the axioms of a field,
show that (xy)−1 = x−1y−1.

x−1y−1 = 1(x−1y−1) M3. Multiplicative Identity

= [(xy)−1(xy)](x−1y−1) M4. Multiplicative Inverse

= (xy)−1[(xy)(x−1y−1)] M2. Associativity of Multiplication

= (xy)−1[(yx)(x−1y−1)] M1. Commutativity of Multiplication

= (xy)−1[((yx)x−1)y−1] M2. Associativity of Multiplication

= (xy)−1[(y(xx−1))y−1] M2. Associativity of Multiplication

= (xy)−1[(y(x−1x))y−1] M1. Commutativity of Multiplication

= (xy)−1[(y1)y−1] M4. Multiplicative Inverse

= (xy)−1[(1y)y−1] M1. Commutativity of Multiplication

= (xy)−1[yy−1] M3. Multiplicative Identity

= (xy)−1[y−1y] M1. Commutativity of Multiplication

= (xy)−11 M4. Multiplicative Inverse

= 1(xy)−1 M1. Commutativity of Multiplication

= (xy)−1 M3. Multiplicative Identity

5. Let E ⊂ R be a nonempty subset. State the definition: E is not bounded above. Consider the

set E =
{

n3

n2 + 2
: n ∈ N

}
. Show that E is not bounded above.

The nonempty real set E is not bounded above if for every M ∈ R there is an x ∈ E such
that M < x, i.e., (∀M ∈ R)(∃x ∈ E)(M < x).

To show that E =
{

n3

n2 + 2
: n ∈ N

}
is not bounded above, choose M ∈ R. By the Archimedean

Property, there is an n ∈ N such that n > M + 2. For this n, because n ≥ 1 we have n2 ≥ n so

n3

n2 + 2
=

n3 + 2n− 2n

n2 + 2
= n− 2n

n2 + 2
≥ n− 2n2

n2 + 2
≥ n− 2n2

n2
= n− 2 > (M + 2)− 2 = M.

Thus we have shown for any M ∈ R there is x ∈ E, namely x =
n3

n2 + 2
for this n such that

M < x.
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