
Math 3210 § 2.
Treibergs

Third Midterm Exam Name: Solutions
April 2, 2014

(1.) Let f : R→ R be a function. Define: f is uniformly continuous on R. Determine whether
f(x) =

√
1 + |x| is uniformly continuous on R. Prove your answer using just the definition.

A function f : R → R is uniformly continuous iff for every ε > 0 there is a δ > 0 such that
|f(x)− f(y)| < ε whenever x, y ∈ R such that |x− y| < δ.

We prove that f(x) =
√

1 + |x| is uniformly continuous on R. Choose ε > 0. Let δ = 2ε.
Then for any x, y ∈ R such that |x− y| < δ we have

|f(x)− f(y)| = |
√

1 + |x| −
√

1 + |y||

=

∣∣∣∣∣ (
√

1 + |x| −
√

1 + |y|)(
√

1 + |x|+
√

1 + |y|)√
1 + |x|+

√
1 + |y|

∣∣∣∣∣
=

∣∣1 + |x| − 1− |y|
∣∣√

1 + |x|+
√

1 + |y|

=

∣∣|x| − |y|∣∣√
1 + |x|+

√
1 + |y|

≤ |x− y|
2

<
δ

2
=

2ε

2
= ε

where we have used the reverse triangle inequality and
√

1 + |x| ≥ 1.

(2.) Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

A. Statement: Let fn : R → R be a sequence of continuous functions such that f(x) =
lim
n→∞

fn(x) exists for every x ∈ R. Then f is continuous.

FALSE. Let fn(x) =


0, if x < 0;

xn, if 0 ≤ x ≤ 1;

1, if 1 < x.

Let f(x) =

{
0, if x < 1;

1, if 1 ≤ x.
. Then fn is continuous

on R, fn → f as n→∞ pointwise, but f is not continuous.

B. Statement: Let f : [0, 1] → R is a continuous function such that f(0) = f(1). Then there
is a c ∈ (0, 1) such that f ′(c) = 0.

FALSE. Consider f(x) = |x − 1
2 |. Then f ′(x) = −1 if x < 1

2 , f ′(x) = 1 if x > 1
2 and the

derivative is undefined at x = 1
2 . Hence at no x is the derivative zero.

C. Statement: Let f : R→ R be a continuous bounded function. Then for every y ∈ R such
that I = inf

R
f < y < sup

R
f = S there is an x ∈ R so that f(x) = y.

TRUE. Since f is bounded, both I and S are finite. Given I < y < S, by the definition if inf
and sup there are numbers x1, x2 ∈ R such that f(x1) < y < f(x2). Since f is continuous on
the closed interval between x1 and x2 and y is an intermediate value, by the Intermediate Value
Theorem, there is c between x1 and x2 such that f(c) = y.
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(3.) Let f : R→ R be a function and a ∈ R. State the definition: f is differentiable at a. Assume
that f(x) is differentiable at a. Using only the definition, show that the function g(x) = xf(x) is
also differentiable at a.

f is differentiable at a iff the limit lim
x→a

f(x)− f(a)

x− a
exists and is finite. Its value is the

derivative f ′(a).
We compute the limit of difference quotients and use the product rule trick. The limit of

difference quotients

lim
x→a

g(x)− g(a)

x− a
= lim
x→a

xf(x)− af(a)

x− a

= lim
x→a

xf(x)− xf(a) + xf(a)− af(a)

x− a

= lim
x→a

(
x
f(x)− f(a)

x− a
+ f(a)

x− a
x− a

)
= lim
x→a

(
x
f(x)− f(a)

x− a
+ f(a)

)
= af ′(a) + f(a),

where we have used the limit of a product is the product of limits. Thus the limit of difference
quotients of g exists at a and equals g′(a) = af ′(a) + f(a), as expected from the product rule!

(4.) Suppose f : R→ R is a continuous function and a ∈ R. Assume that f(a) 6= 0. Then there
is a positive η > 0 such that |f(x)| ≥ η whenever x ∈ R and |x− a| < η.

Since f(x) is continuous at a, for every ε > 0 there is a δ > 0 so that |f(x) − f(a)| < ε
whenever x ∈ R and |x − a| < δ. Take ε0 = 1

2 |f(a)| > 0. There is δ0 > 0 so that if |x − a| < δ0
then

|f(x)− f(a)| < ε0 =
1

2
|f(a)|.

It follows that for the same x,

|f(x)| = |f(a) + f(x)− f(a)| ≥ |f(a)| − |f(x)− f(a)| > |f(a)| − 1

2
|f(a)| = 1

2
|f(a)|.

Thus if we put η = min{δ, 12 |f(a)|} > 0 then the conclusion follows: |x−a| < η implies |x−a| < δ
which implies |f(x)| > 1

2 |f(a)| ≥ η, as to be shown.

(5.) Let D ⊂ R be a nonempty subset and f, fn : D → R be functions. State the definition:

fn → f as n→∞ uniformly on D. Let fn(x) =
n

x+ n
. Determine whether the sequence {fn(x)}

converges uniformly on D = (0, 1). Prove your answer using just the definition of uniform
convergence.

We say that fn → f as n→∞ converges uniformly on D iff for every ε > 0 there is an N ∈ R
so that |fn(x)− f(x)| < ε whenever x ∈ D and n > N .

To show uniform convergence using the definition, we need to identify the limiting function.
However, the limiting function will be the same as the one we get for the pointwise limit which
we can find for x ∈ (0, 1) by

f(x) = lim
n→∞

fn(x) = lim
n→∞

n

x+ n
= lim
n→∞

1
x
n + 1

=
1

0 + 1
= 1.

Now we show that the convergence fn → f as n→∞ is uniform. Choose ε > 0. Let N = 1
ε .

Then for any number x ∈ (0, 1) and n > N , because 1 > x > 0 and x+ n > 0 we have

|fn(x)− f(x)| =
∣∣∣∣ n

x+ n
− 1

∣∣∣∣ =

∣∣∣∣n− x− nx+ n

∣∣∣∣ =
x

x+ n
<

1

0 + n
=

1

n
<

1

N
=

1

1/ε
= ε.
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