Math 3220 § 1.  Sample Problems for the Third Midterm Exam  Name: Problems 2Jith Solutions
Treibergsar November 2, 2007

Questions 1-4 appeared in my Fall 2000 and Fall 2001 Math 3220 exams.

(1) Let f: R™ — R™ be differentiable at a € R™.
(a.) Let g : R® — R be defined by g(z) = x e f(z), (dot product.) Find the total derivative
(differential) Dg(a)(h) where h € R™.
(b.) Without using the product theorem, prove your answer.
(2) For each part, determine whether the statement is TRUE or FALSE. If the statement is true, give a
justification. If the statement is false, give a counterexample. You may use theorems.
(a.) Let f: R?> — R be continuous. Suppose that for all (z,y) € R? both

h—0 h k—0 k

exist. Then f is differentiable at (1,2).
(b.) Suppose f: R?* — R is a C? function for which the third partial derivatives f..,(x,y) exist for
all (z,y) € R? such that fy.,(z,y) is continuous at (0,0). Then f.,.(0,0) and fy..(0,0) exist and are

equal frzy(0,0) = f2yz(0,0) = fyz2(0,0).

(3) Suppose f,g : R? — R?. Assume that g is differentiable at xo € R? and that for some a > 1 and
M < oo we have
[£(x) — g(x)[| < M|x — xol|*

for all x € R2. Show that f is differentiable at xq and that Df(xo) = Dg(xo).
(4) Let F: R5 — R? be given by F' = (f1, fa) where

fl(vawa$7y7z) = ’U+U)2+Z‘+y,

fg(v,w,x,y,z) = vy + wz.

Suppose that there is an open neighborhood U C R? containing the point (3,4,5) and C! functions
G : U — R? where G = (g1, go) so that for all (z,y,2) € U,

91(37475) :17 fl(gl(1'7y72)792(x,y72),z,y72> :127
92(37475) =2; f2(gl(x>y73)792(xayvz)ax?yvz) =14.

What is the differential DG(3,4,5)(h, k,£) ?

E1. Suppose f: R3 — R? is given below. Is f differentiable on R3? If so, find the differential

Df(z,y,2)(h, k. 0).
f v _ xy + 2223
Z ot ty+ryts )

E2. Find the extrema of (¥, 2) = 22 + y? + 22 subject to the constraints z —y = 1 and y? — 22 = 1.

E3. Suppose that r and « are positive, E C R" is a convex set such that £ C B,.(0), and that there exists
a sequence xj € F such that x; — 0 as k — co. If f: B,.(0) — R is continuously differentiable and
|f(x)] < ||x]|« for all x € E, prove that there is an M < oo such that |f(x)| < M||x]| for x € E.

E4. Show that f(x,y) has partial derivatives for all (z,y) € R? but f is not differentiable at (0,0), where

23 + 23 + day?
———, |if 0,0);
o) = g @) £ 00)

0, if (z,y) = (0,0).
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E5. Suppose that f : R? — R is differentiable at a in R? and df(a) # 0. Show that V f(a) points in the
direction of fastest increase (that has the largest directional derivative.)
E6. Show that S C R* is locally a parameterized 2-surface near b = (0,2, 0,2), where

S={(z,y,z,w) eR*: 2> + 9 + 22 +w?* =8, s +y+2—w = 0}.

Find the tangent plane to S at b.

E7. Suppose that f : R? — R is C® and some point a € R? is critical df(a) = 0 and d?f(a) has both a
positive and a negative eigenvalue. (Since second derivatives are continuous, d?f(a) is symmetric thus
all of its eigenvalues are real.) Show that the critical point a is a saddle point: for every § > 0 there are
points x,y € Bs(a) so that f(x) < f(a) < f(y).

E8. Let F': R3 — R3 be given by F(z,y,2) = (22 + y?,22,y> — 2%). Assume that there is an open set U
about Py = (3,1,2) and that V = F(U) is an open set about Q)9 = F'(P,) on which F has an inverse
function F~1 € C1(V,U). Find D[F~1)(Qo).

E9. Suppose G : R® — R3 is given by G(p,q,z,v, 2) = (px +v%,¢*2,py — qz + ). Assume that there is an
open set U around (3,2) and a C* function H : U — R? so that H(3,2) = (1,5,4) and for all (p,q) € U
we have G(p,q, H(p,q)) = (28,16,8). Find DH(3,2).

Solutions.
(1.) Let f: R™ — R™ be differentiable at « € R™. Let g : R™ — R be defined by g(z) = z ¢ f(z), (dot
product.) Find the total derivative (differential) Dg(a)(h) where h € R".

The product rule gives Dg(x)(h) = D(z e f(x))(h) = he f(x)+z e Df(z)(h). This is the differential because

oo llgGe +h) — g() = Dy _ e+ h) e fa+h) —xe f(z) —he f(z) —x 0 D)D)

h—0 7] T h—0 IRl
o 20 ULz ) = 1) = DE@YI) + he (FGo + 1) = S

fmy il

o Lo @+ 0 = F@) = DIl )
< Jim { o + G0 = F@I} = llell-0+1-0=0

using f is continuous at a which follows from f being differentiable at a.
(2a.) Let f: R? — R be continuous. Suppose that for all (z,y) € R? both

lim flx+h,y) — f(z,y) and lim flx,y+k)— flx,y)
h—0 h k—0 k

exist. Then f is differentiable at (1,2).

FALSE! The two limits are nothing more than f,(z,y) and f,(z,y), the partial derivatives. There are functions
where the partial derivatives exist at all points, but the function is not differentiable. (If it were known that f,
and f, are continuous at some point a € R?, then our theorem says that the function would be differentiable
at a.) An example of such a function is

z—1)%(y—2 .
fx,y) = % if (z,y) # (1,2);
0 if (z,y) = (1,2).

Away from (1,2), the denominator avoids zero, so the partial derivatives exist and are continuous, hence f is
differentiable. Also, observe that f(1,y) = f(x,2) =0 for all z,y. Hence f,(1,y) = fz(z,2) = 0 so the partial
derivatives exist at (1,2). If the function were differentiable at (1,2), then the vanishing of the partial derivatives
implies that the differential would have to be T'(h, k) = 0 all h, k. But the limit

[f(L+h2+k) - f(1,2) = T(h, k)| . IS +h2+E)]

1m = 1m
(h,k)—(1,2) (| (R, k)| (hk)—(1,2) [ (R, k)]
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does not exist. To see this, consider the first approach (h,k) = (¢,0) as t — 0. The numerator vanishes so
along this approach the limit would be zero. Then consider the second approach (h,k) = (¢,t) for ¢ > 0. Then
fA+t,2+1t) =t/2 and ||(t,t)]| = V/2|t|. Then the difference quotient tends to 1/(21/2). Since the two
approaches have different limits, there is no two dimensional limit: the function is not differentiable at (1,2).
(2b.) Suppose f : R* — R is a C? function for which the third partial derivatives f..,(z,y) exist for all
(z,y) € R? such that fyuy(x,y) is continuous at (0,0). Then f.,,(0,0) and f,.(0,0) exist and are equal

TRUE! This is just an application of the equality of cross partials theorem to f, and f, which are C' by
assumption, since f is C2. We are given that (f.)., exists and is continuous at (0,0). But, this is sufficient
to be able to assert the existence of the other mixed partial derivative, and that it is equal to the first at the
point (fz)zy(0,0) = (fz)y=(0,0). But since f € C*(R?), we also have that f,, = f,. for all of R?. Hence,
all third derivatives exist and are equal f34,(0,0) = (f2)2y(0,0) = (f2)y2(0,0) = (f2y)=(0,0) = (fyz)2(0,0) =
Fyez(0,0).
(3.) Suppose f,g: R? — R2. Assume that g is differentiable at xo € R? and that for some a > 1 and M < oo
we have

1£(x) — g(x)]| < Mijx — xo||*

for all x € R2. Show that f is differentiable at xq and that Df(xo) = Dg(xo).
It suffices to show that the difference quotient limits to zero. Now,

o 1@+ 1) = S (@) = Dy@)(B)]| _

i 1]
o I h) —gla+ )~ f(@) +g(a) + oo+ h) — glx) — Dy(a)(h)]
A ]
o LG k)~ g W)+ [lg(e) — F@)] + gl +B) — g(x) — Da(x) (h)]
< o, 1]
(Mt MO | flgla+ h) — g(z) — Dg(x)(h)]
: li“{ mr ] }

lg(x + ) — g(z) — Dg() ()|

=0+0.
il

= lim M||A[|*"* + lim
h—0 h—0

(4*.) (Slight generalization.) Let F : R® — R? be given by F' = (f1, f2) where f1(v,w,z,y,2) = v+w?+x+y,
fo(v,w,z,y,2) = vy + wz. Show that there is a neighborhood U C R? containing the point (3,4,5) and C!
functions G : U — R? where G = (g1, g2) so that g1(3,4,5) =1, g2(3,4,5) = 2 and for all (x,y,2) € U,

filgi(z,y, 2), 92(2,y, 2), 2y, 2) = 12, fa(g1(x,y, 2), 92(x, y, 2), 2, y, 2) = 14. Find the total derivative
DG(3,4,5)(h, j,k).

You were given the first conclusion in problem (4.) which can be answered knowing the chain rule. (4*) is
an application of the Implicit Function Theorem. (We have not talked about this in class yet, The theorem says
that if there is enough differentiability, and if the problem can be solved for the linear approximations given by
the differential, then, at least in a small neighborhood, the nonlinear problem can be solved as well. You will
not be asked to apply the Implicit Function Theorem, but you should be able to solve such problems, assuming
its conclusions.) The function F : R?*™ — R? is C! on R® such that F(1,2,3,4,5) = (12,14) = c¢. To
solve for v and w in terms of (x,y, z) we need to be able to solve the linearization. If we put u = (v, w) and
x = (z,y,2), we are looking for G : R3 — R? so that F(G(x),x) = c and G(3,4,5) = (1,2). Taking Dy
gives Dy F(G(x),x) o DG(x) + DxF(G(x),x) = 0 which says that we may solve for the differential DG(x)
whenever D, F(G(x),x) is invertible and then DG (x) = —[DyF(G(x),x)]™! 0 DxF(G(x),x). At the center

point (3,4,5), the matrix of the transformation is
B (1 Qw) __(1 4)
x=(3,4,5) Y2 Jlax)=(1,2,3,4,5) 45

which is invertible. Hence there is an open set U C R? such that (3,4,5) € U and a C! function G : U — R?
so that G(2,3,4) = (1,2) and F(G(x),x) = c for all x € U. (Thus, we have checked the differentiability and

on  on
DuF(G(3,4,5),(3,4,5)) = (aaf 3}”)
v ow
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the solubility of the linearized problem is satisfied. The IFT gives the existence of a G € C}(U,R?) so that
G(2,3,4) = (1,2) and F(G(x),x) = c for all x € U. You would be given this as a hypothesis. Then take the
total derivative of F(G(x),x) = c with respect to x and solve for DG(x) at the given point, as above.) By the
formula for the differential

h h
DG(3,4,5) | k | = —[DuF(G(3,4,5),(3,4,5))] ' o DxF(G(3,4,5),(3,4,5)) k
14

Ofr Ofr
ov ow
Ofs  Of2 >

[ -t ofy o O
— ox oy 0z
ov ow x=(3,4,5) ox oy 0z x=(3,4,5)
—1
_ (1 Qw) (1 10 ) Z
Y % Jlux)=(1,2,3,4,5) 0 v w (u,x)=(1,2,3,4,5) Y,
(14110 Z 15 —4 Z
- 4 5 01 2 v 11\ 4 0 1 2 )

1 (-5 -1 8 Z—i sh—k 480\
11\ 4 3 -2 ’ 11 \ 4h + 3k —2¢

(E1.) Suppose f : R® — R? is given by f(z,y,2) = (zy + 2223, 2% + y + y°2%). Is f differentiable on R37? If
so, find the differential df (x,y, z)(h, k, £).
YES! The partial derivatives are

of x (y+2z23 of r B x af r (32222
ax Z - 4333 ) ay :': - 1 + 5y4Z6 i 82 Z - 6y5z5

Since f is a polynomial function, its first partial derivatives exist at all points and are polynomial functions. But
by the theorem giving conditions for differentiability, since the partial derivatives are continuous at all points, the
function is differentiable at all points. The differential is given by the 2 x 3 Jacobian matrix

(o) (%8 A o
— | af of: )i 4 5 5
z 14 5x Oy 0s ¢ 4a’ 1+ 5y*266 6y°z ’

(E2.) Find the extrema of p(x,y, z) = 22 + y? + 22 subject to the constraints z —y = 1 and y? — 2% = 1.
Let g(z,y,2) =2 —y — 1 and h(z,y, z) = y*> — 22 — 1. Then using Lagrange Multipliers, the extrema occur
as solutions (z,y, z, A\, u) of the system g =0, h =0, Vo = A\Vg + puVh. Hence

(2(5, 2ya 22) = >‘(13 7170) + ,LL(07 2y7 722)

Thus 2x = A, 2y = —A 4+ 2uy and z = —pz. From the last equation, either z =0 or p = —1.

If w = —1then A = —4y. Since 22 = X we get  + 2y = 0. Now g = 0 implies y = 1/3. However, h = 0
implies 0 = 1/9 — 22 — 1 which is a contradiction.

If z =0 then h =0 implies y = +1. Since ¢ = 0 we have z = 2 when y = 1 and x = 0 when y = —1. Thus
the only candidates for extrema subject to the constraints g = h = 0 are ¢(2,1,0) =5 and ¢(0,—1,0) = 1. To
see whether these are maxima or minima, consider the geometric interpretation. The problem asks to find the
closest or farthest points of the solution set g = h = 0 to the origin. However h = 0 corresponds to a hyperbolic
cylinder (union of lines parallel to the x-axis that pass through a hyperbola in the y-z plane.) The constraint
g = 0 is a plane parallel to the z-axis that crosses the hyperboloid. Thus the constraint set consists of two
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hyperbolas in the g = 0 plane. The level curves on ¢ are circles in this plane. As there are only two candidates
for extrema, these occur when the circles meet (are tangent to) the two arcs of the hyperbola. Larger circles cross
the arcs. This means that (0,—1,0) is a minimum and (2,1,0) is a local but not global minimum, and there is
no maximum since one can attain arbitrarily large ¢ on the constraint set.

(E3.) Suppose that r and « are positive, E C R™ is a convex set such that EC B,.(0), and that there exists a
sequence Xy, € E such that x;, — 0ask — oo. If f: B,.(0) — R is continuously differentiable and | f(x)| < ||x]|*
for all x € F, prove that there is an M < oo such that |f(x)| < M||x|| for x € E.

Since the partial derivatives are continuous, the function z ~ ||df(x)| is continuous. As E is closed and
bounded, it is compact so the continuous function attains its maximum M = sup{||df(z)| : z € E} < co. Since
E is convex, for any pair of points x,x; € E the line segment [x,X] is in E. Since f is differentiable in a
neighborhood of [xy,x], we may apply the Mean Value Theorem. There is a ¢ € [x, X] so that

fx) = F(xk) + df (¢) (x — %)
Estimating using triangle and Schwarz inequalities, and the hypothesis

[FEN < 1 () + lldf (e) I = x|

< x| + Mlx = xg||.
Now since a > 0, by passing to the limit as £ — oo we obtain the estimate
|£(x)] <0+ M||x]|.
(E4.) Theorem. f(x,y) has partial derivatives for all (x,y) € R? but f is not differentiable at (0, 0), where
23 4 23 + 4xy?
—— if (a, 0,0);
Fla.y) = 2 12y (z,y) # (0,0)
0, if (z,y) = (0,0).

Since f is a rational function whose denominator is nonzero away from (0,0), the partial derivatives exist and
are rational functions there. At (0,0),

of . f(h,0)—f(0,0) -0
gz (% 0) = lim 7 = fim =1
and B3
_ 2n®

37y h h—0

so both partial derivatives exist at (0,0) as well. Therefore, supposing that f were differentiable at (0,0), its
differential would be df(0,0) = (1,1). Now lets check if this differential well-approximates f near zero.

3 3 2
o TOEROED 0.0~ OO _ | 0 (b
(h,k)—(0,0) II(h, k) — (0,0)]| (h,k)—(0,0) VhZ ¥ k2
2hk? — b2k

= lim .
(h,k)=(0,0) (h2 + 2k2)Vh? + k2

Along the path (h,k) = (¢,0) the limit is zero. However, taking the path (h,k) = (t,t), the limit is 1/(3v/2).
Because the limits along two approach paths disagree, there is no two dimensional limit. The function is not well
approximated by the only possible affine function, hence it is not differentiable at (0,0).

(E5.) Theorem. Suppose that f : R? — R is differentiable at a € R? and df(a) # 0. Then Vf(a) points in
the direction of fastest increase (that has the largest directional derivative.)
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Let u be a unit vector. Then the directional derivative in the u direction is Dy f(a) = Vf(a) - u. By the
Schwarz inequality D f(a)| < |Vf(a)|[ull = |Vf(a)] with equality only if u — +Vf(a)/|Vf(a)]. Thus
Dy f(a) = ||V f(a)] if and only if u= V f(a)/||Vf(a)|l, which is in the gradient direction.

(E6.) Theorem. S C R* is locally a parameterized 2-surface near b = (0,2,0,2), where

S={(z,y,z,w) ER*: 2> + 9> + 22 +uw? =8, s +y+2—w=0}.

the tangent plane to S at bis {(s,2— 5 — £, t,24+ 5+ %) :s,t e R}.
The surface is the intersection of a 3-plane through the origin and the 3-sphere about the origin of radius 21/2
which is a great 2-sphere. Let’s write the surface near b as a graph over the (z, z)-plane, for 22 + 22 < 1. Solving

the second equation gives y = w — x — z. Substituting x = u and z = v into the first and solving for w gives
G : U — R* where we take the “+" square root because G(0,0) = (0,2,0,2) and U = B;((0,0)):

—u—v4+V16 —3u2 —2uv — 302 u+v+ V16 — 3uZ — 2uv — 302
G(u,v) = | u, 5 v, 5

G € CY(U,R*) because 16 — 3(u? + v?) — 2uv > 16 — 3 -1 — 1 = 12 since 2uv < u? +v? < 1. One checks that
G(u,v) € S. Let V ={(z,y,2,w) : 2% + 22 < 1,y > 0,w > 0}. One checks that b€ SNV = G(U). We need
that G: U — SNV is one-to-one. But if (u;,v;) € U and G((u1,v1)) = G((u2,v2)) then - and z-coordinate
functions give u; = uy and v; = vy so G is one-to-one. Finally we check that G is two dimensional. dG((u,v))
is a 4 X 2 matrix given by

1 0 1 0

_1_ —3u—v 1 —u—3v 1 1
_ 2 2./16—3u2—2uv—302 2 2v/16—3u?—2uv—30? _| 72 —3
dG((U,’U)) — 6 O3u uv—3v V16 13u uv—3v , dG((()’O)) — 02 12
1 —3u—v 1 —u—3v 1 1

2 24/16—3u2 —2uv—3v2 2 2/16—3u2 —2uv—3v2 2 2

dG is rank two because the first and third rows are independent, hence G(U) is a parametrized 2-surface. The
tangent space is b + dG((0,0))(R?).
(E7.) Theorem. Suppose that f : R? — R is C3 and some point a € RP is critical df(a) = 0 and d*f(a) has
both a positive and a negative eigenvalue. Then the critical point a is a saddle point: for every § > 0 there are
points x,y € Bs(a) so that f(x) < f(a) < f(y).

By continuity of the third partial derivatives, a continuous function takes its maximum on a compact set,

o ?
namely M2 = sup {Z”k <(MJ;(12$) Su—all < 1}. It follows that for any h € R?, and ¢ € Bi(a)
that |d” f( ’Z idk ﬁh h;hi| < M||h||* by applying the Schwarz inequality to each sum. Now
0

by assumption there are v,w € RP unit eigenvectors such that d’f(a)v = A\iv and d?f(a)w = Aow with
A1 < 0 < Ag. Assume that 0 < 0 < 1issosmall that M§ < min{|A],|\2|}. Since second derivatives are
differentiable, we can apply Taylor's formula to second order. We get for each 0 < ¢t < ¢ some ¢ € (0,1) such
that

Fla+tv) = f(a) + df(a)(tv) + %t% L2 f(a)v + ét3d3 fla+ ctv)(v)?

1 1
< J(@) + 0+ GMtv v S OMv[?

< f(a) + t2 <>\1+;tM) fa) + t2 (A1+;A1I)<f(a)~

Similarly, for each 0 <t < ¢, thereis a ¢ € (0,1) so that

fla+tw) > f(a)+ %)\Qtzw W — étsM”WHS > f(a) — %tz <)\2 - ;tM)

> f@)+ 5 (%= gl ) > @
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(E8*.) (Slight generalization.) Theorem. Let F : R® — R? be given by F(z,y,2) = (22 + 4%, 2z,y> — 2°).
Then there is an open set U about Py = (3, 1,2) so that F is invertible on U and that F(U) is an open set about
Qo = F(Py) on which F~1is C!. Find D[F~!](Qo). We find D[F~1](Q) where Q € F(U).

(The function F(x,y,2) polynomial, therefore C'. We check that the determinant of the Jacobian matrix
Ap(Py) # 0 and all of the conclusions follow from the Inverse Function Theorem. The fact that the linearization
was invertible at the point enables you to conclude the existence of an inverse function. You were, however,
given this in the problem.) Let G € C'(V,R?) be the inverse function of F. Thus in U we have the equation
F(G(z,y,2)) = (z,y,2). Apply the chain rule, and solve for DG at the point. Thus D(F o G) = DF(P,) o
DG(Qop) = I so DG(Qo) = (DF(Py))~!. The matrix of DF(P,) is the Jacobian matrix

OF; OF; OFy

ox Oy 0z 20 2y 0 6 2 0
DF(P)=|%2 %2 82 |- > 0 2 |; DFP)=|2 0 3
OF;  0Fy OF 0 3y> —32° 0 3 —12

ox oy 0z

Thus Ap(Py) = det(DF,(Py)) = 6 # 0. Finally, for @ near (10,6, —7) = Qo = F(P,), so DF~1(Q) =

1 —3zy? 328 3zy? 34
[DF(F~1 Q)] ™! = R 6yz2  —6xz®> —6xy® |; DF '(Qo)=|-4 12 3
yz= = oty 2xy —2z2 —2yz -1 3 2

where (z,y,2) = F71(Q). O

(E9*.) (Slight generalization.) Theorem. Suppose G : R® — R? is given by G(p, ¢, 7,9, 2) = (pr+v?, ¢*2,py —

qz + o). Then there is an open set U around Ty = (3,2) and a C! function H : U — R? so that H(3,2) =

(1,5,4) = Xy and for all (p,q) € U we have G(p,q, H(p,q)) = (28,16,8). We find DH(3,2) and DH (p, q).
The function G is polynomial so C'. We have to check that the linearization is soluble at (3,2,1,5,4). Let

To = (3,2) and Xy = (1,5,4). This follows if the DxG part of the Jacobian matrix is invertible.

909G, 909G, 0G,

Ox dy 0z p 2y O 3 10 O
DG =| %2 %2 9| =10 0 ¢ |; DG(Ty,Xo)=(0 0 4
9Gs 9Gs 0Gs 1 p —¢q 1 3 =2

ox oy 0z

which is invertible since its determinant is 4. The Implicit Function Theorem applies and yields the C! function H as
desired. (Again, you were given that there is H € C*(U) satisfying F(p,q, H(p,q)) = (28,16,8) for all (p,q) € U.
Find the differential of H by differentiating the equation using the chain rule. Think of H : U — U x R3 is given
by H(p,q) = (p,q, H(p,q)), and then differentiate G o H = const using the chain rule. Thus DyH = (DfH) so
0= D¢(GoH) = DG+ DxG o DyH. Here the total derivative matrix has columns associated to t = (p, ¢) and
columns associated to x = (x,y, ) drivatives, DG = (DyG, DxG). To find the total derivative of H we need

the other part of the Jacobian

90G, 9G4

o g z 0 1 0 -3 16
DG = %2 2| =0 22z]|; DG(Tp,Xo)=|0 16 |; DH(Tp)=| -2 -25

% % Yy —z 5 —4 —10 48

p q

since total derivative of implicit function DH (T') = —[DxG(T, H(T))|"'D¢G(T, H(T)) =

1 Pq> q> 0 z 0 1 xpg? 23
x| e —pa 29— P’ 0 2gz | = 5 | 2ey9+ 2y —yp® p?z —2pgPz —2yz
2yq®  —pg? 0 y -z 2zyq? —2pg*z
where A = ¢*(p* — 2y) and (z,y,2) = H(p.q). O



