
Math 3220 § 1.
Treibergs −−σιι

Second Midterm Exam Name: Solutions
October 3, 2007

1. Let E ⊆ R2.

(a) [3] Define: E is an open set.

(b) [19] Using just the definition, show that E = {(x, y) ∈ R2 : 1 < x < 2} is an open set.

2. Let f : R2 → R and (x0, y0) ∈ R2.

(a) [3] Define: f is continuous at (x0, y0).

(b) [19] Using just the definition, show that f(x, y) = xy2 is continuous at (x0, y0).

3. Let E ⊆ Rp, fn : E → Rq for all n ∈ N and f : E → Rq.

(a) [3] State the definition: fn converges uniformly to f on E.

(b) [19] Let

fn(x, y) =
1

1 + (x− n)2 + y2
.

Then for any (x, y) ∈ R2,
lim
n→∞

fn(x, y) = 0.

Determine whether fn → 0 uniformly on R2 and prove your answer.
UNIFORMLY CONVERGENT: © NOT UNIFORMLY CONVERGENT: ©

4. (a) [3] State the definition: K ⊆ Rp is a compact set.

(b) [19] Let E ⊆ Rp be an infinite set. Suppose that every point of E is isolated: for every
x ∈ E there is a δ > 0 so that the only element of E that is in the open δ-ball about
x is x itself: (∀x ∈ E)(∃δ > 0)(Bδ(x) ∩ E = {x}). Show that E is not compact.

5. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) [8] Suppose f : Rp → R is continuous. Then E = {x ∈ Rp : f(x) ≤ 0} is a closed set.
TRUE: © FALSE: ©

(b) [8] Suppose f : Rp → Rq is continuous. Then E = {x ∈ Rp : ‖f(x)‖ ≤ 1} is a
connected set.

TRUE: © FALSE: ©

(c) [8] Let E ⊆ Rp and {xk} be a sequence in the boundary ∂E. If the sequence converges
to a point xk → x in Rp, then x ∈ ∂E.

TRUE: © FALSE: ©
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Solutions.

1. (a) Definition: E ⊆ Rp is an open set if for every x ∈ E there is a δ > 0 so that the entire
δ-ball about x is in E: (∀x ∈ E)(∃δ > 0)(Bδ(x) ⊆ E).

(b) Theorem. E = {(x, y) ∈ R2 : 1 < x < 2} is an open set.
Proof. Choose (x0, y0) ∈ E. Let δ = min{x0 − 1, 2− x0}. (This δ > 0 is the distance
from (x0, y0) to ∂E.) To show Bδ((x0, y0)) ⊆ E, choose (u, v) ∈ Bδ((x0, y0)) which
means ‖(x0, y0)− (u, v)‖ < δ. We need to conclude 1 < u < 2 so (u, v) ∈ E. Because
δ ≤ x0−1, we have u = x0−(x0−u) ≥ x0−‖(x0, y0)−(u, v)‖ > x0−δ ≥ x0−(x0−1) = 1.
Also because δ ≤ 2−x0 we have u = x0− (x0−u) ≤ x0 +‖(x0, y0)− (u, v)‖ < x0 +δ ≤
x0 + (2− x0) = 2. Thus 1 < u < 2 so Bδ((x0, y0)) ⊆ E.

2. (a) Definition: f : R2 → R is continuous at (x0, y0) ∈ R2 if for every ε > 0 there is a δ > 0
such that |f(x0, y0)− f(u, v)| < ε whenever (u, v) ∈ R2 and ‖(x0, y0)− (u, v)‖ < δ.

(b) Theorem. f(x, y) = xy2 is continuous at (x0, y0).
Proof. Choose ε > 0. Let δ = min{1, 1

3 (1 + 2‖(x0, y0)‖)−2
ε}. Then if (u, v) ∈ R2 such

that ‖(u, v) − (x0, y0)‖ < δ we have |v| ≤ |v − y0| + |y0| ≤ ‖(u, v) − (x0, y0)‖ + |y0| <
δ+ |y0| ≤ 1 + |y0| because δ ≤ 1. Hence also |v+ y0| ≤ |v|+ |y0| ≤ 1 + 2|y0|. Thus, for
such (u, v),

|f(u, v)− f(x0, y0)| = |uv2 − x0y
2
0 |

= |uv2 − x0v
2 + x0v

2 − x0y
2
0 |

≤ |u− x0| |v|2 + |x0| |v + y0| |v − y0|
≤

(
(1 + |y0|)2 + |x0| (1 + 2|y0|)

)
‖(u, v)− (x0, y0)‖

< 2 (1 + 2‖(x0, y0)‖)2 δ
≤ ε.

3. Let E ⊆ Rp, fn : E → Rq for all n ∈ N and f : E → Rq.

(a) Definition: fn converges uniformly to f on E if for every ε > 0 there is a N ∈ N so
that for all n > N and all x ∈ E we have ‖fn(x)− f(x)‖ < ε.

(b) Theorem. fn(x, y) =
1

1 + (x− n)2 + y2
converges pointwise to f = 0 on R2 but not

uniformly.
Proof. Since fn = (1 + ‖(x, y)− (n, 0)‖2)−1, we see that if n > 2‖(x, y)‖ then ‖(x, y)−
(n, 0)‖ ≥ ‖(n, 0)‖ − ‖(x, y)‖ > n

2 so that then |fn(x, y) − 0| ≤ (1 + 1
4n

2)−1 → 0 as
n→∞. Thus fn → 0 pointwise on R2.
But the convergence is not uniform. The negation of fn → 0 uniformly on R2 is: there
is ε0 > 0 so that for all N ∈ N there is n > N and (u, v) ∈ R2 so that |fn(u, v)−0| ≥ ε0.
Let ε = 1

2 . Choose N ∈ N. Let n = N + 1 and (u, v) = (n, 0). Then for this n and
(u, v), |fn(u, v)− 0| = |1− 0| = 1 ≥ ε0.

4. (a) Definition: K ⊆ Rp is a compact set if every open cover of K has a finite subcover.
That is, if {Uα}α∈A is any collection of open sets of Rp such that K ⊆ ∪α∈AUα then
there are finitely many subscripts {α1, . . . , αn} ⊆ A such that K ⊆ ∪ni=1Uαi

.

(b) Theorem. Let E ⊆ Rp be an infinite set. Suppose that every point of E is isolated: for
every x ∈ E there is a δ > 0 so that the only element of E that is in the open δ-ball
about x is x itself: (∀x ∈ E)(∃δ > 0)(Bδ(x) ∩ E = {x}). Then E is not compact.
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Proof. We exhibit an open cover of E which does not have a finite subcover, thus
E fails to be compact. For each point x ∈ E let δ(x) > 0 be the radius of the
isolation neighborhood. That is E ∩ Bδ(x)(x) = {x}. Consider the collection of open
sets {Bδ(x)(x)}x∈E . It is a cover of E since if x ∈ E then x ∈ Bδ(x)(x). Hence
E ⊆ ∪x∈EBδ(x)(x). But it has no finite subcover. Otherwise there are finitely many
{x1, . . . ,xn} ⊆ E such that E ⊆ ∪ni=1Bδ(xi)(xi). But since E is infinite, there is
y ∈ E − {x1, . . . ,xn} which is not one of the xi’s. Hence y /∈ Bδ(xi)(xi) for all
i = 1, . . . , n. Thus y /∈ ∪ni=1Bδ(xi)(xi), which is a contradiction.

5. (a) Statement. Suppose f : Rp → R is continuous. Then E = {x ∈ Rp : f(x) ≤ 0} is a
closed set.
TRUE! C = (−∞, 0] is a closed interval. Thus E = f−1(C) is closed because continu-
ous functions pull back closed sets to closed sets.

(b) Statement. Suppose f : Rp → Rq is continuous. Then E = {x ∈ Rp : ‖f(x)‖ ≤ 1} is
a connected set.
FALSE! Let f : R → R be given by f(x) = x2 − 2 which is polynomial, hence
continuous. Then E = f−1([−1, 1]) = [−

√
3,−1] ∪ [1,

√
3] which is not connected.

(c) Statement. Let E ⊆ Rp and {xk} is a sequence in the boundary ∂E. If the sequence
converges to a point xk → x in Rp, then x ∈ ∂E.
TRUE! The boundary ∂E = E−E0 = E∩(E0)c is closed because it is the intersection
of the closure, which is a closed set, and the complement of the interior, which is a
closed set because it is the complement of an open set. But a closed set contains limits
of sequences from the set.

3


