Second Midterm Exam Name: Golutions

October 3, 2007

1. Let $E \subseteq \mathbf{R}^2$.

Math 3220 § 1. Treibergs α

- (a) [3] Define: E is an *open* set.
- (b) [19] Using just the definition, show that $E = \{(x, y) \in \mathbb{R}^2 : 1 < x < 2\}$ is an open set.
- 2. Let $f: \mathbf{R}^2 \to \mathbf{R}$ and $(x_0, y_0) \in \mathbf{R}^2$.
	- (a) [3] Define: f is continuous at (x_0, y_0) .
	- (b) [19] Using just the definition, show that $f(x, y) = xy^2$ is continuous at (x_0, y_0) .
- 3. Let $E \subseteq \mathbb{R}^p$, $f_n : E \to \mathbb{R}^q$ for all $n \in \mathbb{N}$ and $f : E \to \mathbb{R}^q$.
	- (a) [3] State the definition: f_n converges uniformly to f on E.
	- (b) [19] Let

$$
f_n(x,y) = \frac{1}{1 + (x - n)^2 + y^2}.
$$

Then for any $(x, y) \in \mathbb{R}^2$,

$$
\lim_{n \to \infty} f_n(x, y) = 0.
$$

Determine whether $f_n \to 0$ uniformly on \mathbb{R}^2 and prove your answer. UNIFORMLY CONVERGENT: \bigcirc NOT UNIFORMLY CONVERGENT: \bigcirc

- 4. (a) [3] State the definition: $K \subseteq \mathbb{R}^p$ is a compact set.
	- (b) [19] Let $E \subseteq \mathbb{R}^p$ be an infinite set. Suppose that every point of E is isolated: for every $\mathbf{x} \in E$ there is a $\delta > 0$ so that the only element of E that is in the open δ -ball about **x** is x itself: $(\forall x \in E)(\exists \delta > 0)(B_{\delta}(x) \cap E = \{x\})$. Show that E is not compact.
- 5. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

(a) [8] Suppose $f: \mathbb{R}^p \to \mathbb{R}$ is continuous. Then $E = \{x \in \mathbb{R}^p : f(x) \le 0\}$ is a closed set. TRUE: \bigcirc FALSE: \bigcirc

(b) [8] Suppose $f: \mathbb{R}^p \to \mathbb{R}^q$ is continuous. Then $E = \{x \in \mathbb{R}^p : ||f(x)|| \leq 1\}$ is a connected set.

(c) [8] Let $E \subseteq \mathbb{R}^p$ and $\{x_k\}$ be a sequence in the boundary ∂E . If the sequence converges to a point $\mathbf{x}_k \to \mathbf{x}$ in \mathbf{R}^p , then $\mathbf{x} \in \partial E$.

TRUE: \bigcap FALSE: \bigcap

Solutions.

- 1. (a) Definition: $E \subseteq \mathbb{R}^p$ is an open set if for every $\mathbf{x} \in E$ there is a $\delta > 0$ so that the entire δ-ball about **x** is in E: $(\forall$ **x** ∈ E)(∃δ > 0)(B_δ (**x**) ⊆ E).
	- (b) Theorem. $E = \{(x, y) \in \mathbb{R}^2 : 1 < x < 2\}$ is an open set. *Proof.* Choose $(x_0, y_0) \in E$. Let $\delta = \min\{x_0 - 1, 2 - x_0\}$. (This $\delta > 0$ is the distance from (x_0, y_0) to ∂E .) To show $B_\delta((x_0, y_0)) \subseteq E$, choose $(u, v) \in B_\delta((x_0, y_0))$ which means $\|(x_0, y_0) - (u, v)\| < \delta$. We need to conclude $1 < u < 2$ so $(u, v) \in E$. Because $\delta \leq x_0-1$, we have $u = x_0-(x_0-u) \geq x_0-\|(x_0, y_0)-(u, v)\| > x_0-\delta \geq x_0-(x_0-1) = 1$. Also because $\delta \le 2 - x_0$ we have $u = x_0 - (x_0 - u) \le x_0 + ||(x_0, y_0) - (u, v)|| < x_0 + \delta \le$ $x_0 + (2 - x_0) = 2$. Thus $1 < u < 2$ so $B_\delta((x_0, y_0)) \subseteq E$.
- 2. (a) Definition: $f: \mathbf{R}^2 \to \mathbf{R}$ is continuous at $(x_0, y_0) \in \mathbf{R}^2$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that $|f(x_0, y_0) - f(u, v)| < \varepsilon$ whenever $(u, v) \in \mathbb{R}^2$ and $|| (x_0, y_0) - (u, v) || < \delta$.
	- (b) Theorem. $f(x, y) = xy^2$ is continuous at (x_0, y_0) .

Proof. Choose $\varepsilon > 0$. Let $\delta = \min\{1, \frac{1}{3}(1 + 2||(x_0, y_0)||)^{-2}\varepsilon\}$. Then if $(u, v) \in \mathbb{R}^2$ such that $\|(u, v) - (x_0, y_0)\| < \delta$ we have $|\nu| \leq |v - y_0| + |y_0| \leq |(u, v) - (x_0, y_0)| + |y_0| <$ $\delta + |y_0| \leq 1 + |y_0|$ because $\delta \leq 1$. Hence also $|v + y_0| \leq |v| + |y_0| \leq 1 + 2|y_0|$. Thus, for such (u, v) ,

$$
|f(u, v) - f(x_0, y_0)| = |uv^2 - x_0y_0^2|
$$

= |uv^2 - x_0v^2 + x_0v^2 - x_0y_0^2|

$$
\le |u - x_0| |v|^2 + |x_0| |v + y_0| |v - y_0|
$$

$$
\le ((1 + |y_0|)^2 + |x_0| (1 + 2|y_0|)) ||(u, v) - (x_0, y_0)||
$$

$$
< 2 (1 + 2||(x_0, y_0)||)^2 \delta
$$

$$
\le \varepsilon.
$$

- 3. Let $E \subseteq \mathbb{R}^p$, $f_n : E \to \mathbb{R}^q$ for all $n \in \mathbb{N}$ and $f : E \to \mathbb{R}^q$.
	- (a) Definition: f_n converges uniformly to f on E if for every $\varepsilon > 0$ there is a $N \in \mathbb{N}$ so that for all $n > N$ and all $\mathbf{x} \in E$ we have $||f_n(\mathbf{x}) - f(\mathbf{x})|| < \varepsilon$.
	- (b) Theorem. $f_n(x,y) = \frac{1}{1 + (x n)^2 + y^2}$ converges pointwise to $f = 0$ on \mathbb{R}^2 but not uniformly.

Proof. Since $f_n = (1 + ||(x, y) - (n, 0)||^2)^{-1}$, we see that if $n > 2||(x, y)||$ then $||(x, y) - (n, 0)||^2$ $(n,0)$ \geq $\|(n,0)\| - \|(x,y)\| > \frac{n}{2}$ so that then $|f_n(x,y) - 0| \leq (1 + \frac{1}{4}n^2)^{-1} \to 0$ as $n \to \infty$. Thus $f_n \to 0$ pointwise on \mathbb{R}^2 .

But the convergence is not uniform. The negation of $f_n \to 0$ uniformly on \mathbb{R}^2 is: there is $\varepsilon_0 > 0$ so that for all $N \in \mathbb{N}$ there is $n > N$ and $(u, v) \in \mathbb{R}^2$ so that $|f_n(u, v) - 0| \ge \varepsilon_0$. Let $\varepsilon = \frac{1}{2}$. Choose $N \in \mathbb{N}$. Let $n = N + 1$ and $(u, v) = (n, 0)$. Then for this n and $(u, v), |f_n(u, v) - 0| = |1 - 0| = 1 \geq \varepsilon_0.$

- 4. (a) Definition: $K \subseteq \mathbb{R}^p$ is a compact set if every open cover of K has a finite subcover. That is, if $\{U_\alpha\}_{\alpha \in A}$ is any collection of open sets of \mathbb{R}^p such that $K \subseteq \bigcup_{\alpha \in A} U_\alpha$ then there are finitely many subscripts $\{\alpha_1, \ldots, \alpha_n\} \subseteq A$ such that $K \subseteq \bigcup_{i=1}^n U_{\alpha_i}$.
	- (b) Theorem. Let $E \subseteq \mathbb{R}^p$ be an infinite set. Suppose that every point of E is isolated: for every $\mathbf{x} \in E$ there is a $\delta > 0$ so that the only element of E that is in the open δ -ball about x is x itself: $(\forall x \in E)(\exists \delta > 0)(B_{\delta}(x) \cap E = \{x\})$. Then E is not compact.

Proof. We exhibit an open cover of E which does not have a finite subcover, thus E fails to be compact. For each point $\mathbf{x} \in E$ let $\delta(\mathbf{x}) > 0$ be the radius of the isolation neighborhood. That is $E \cap B_{\delta(\mathbf{x})}(\mathbf{x}) = {\mathbf{x}}$. Consider the collection of open sets ${B_{\delta(\mathbf{x})}(\mathbf{x})}_{\mathbf{x}\in E}$. It is a cover of E since if $\mathbf{x} \in E$ then $\mathbf{x} \in B_{\delta(\mathbf{x})}(\mathbf{x})$. Hence $E \subseteq \bigcup_{\mathbf{x} \in E} B_{\delta(\mathbf{x})}(\mathbf{x})$. But it has no finite subcover. Otherwise there are finitely many $\{x_1,\ldots,x_n\} \subseteq E$ such that $E \subseteq \bigcup_{i=1}^n B_{\delta(x_i)}(x_i)$. But since E is infinite, there is $y \in E - \{x_1, \ldots, x_n\}$ which is not one of the x_i 's. Hence $y \notin B_{\delta(x_i)}(x_i)$ for all $i = 1, \ldots, n$. Thus $\mathbf{y} \notin \bigcup_{i=1}^n B_{\delta(\mathbf{x}_i)}(\mathbf{x}_i)$, which is a contradiction.

5. (a) Statement. Suppose $f: \mathbb{R}^p \to \mathbb{R}$ is continuous. Then $E = \{x \in \mathbb{R}^p : f(x) \le 0\}$ is a closed set.

TRUE! $C = (-\infty, 0]$ is a closed interval. Thus $E = f^{-1}(C)$ is closed because continuous functions pull back closed sets to closed sets.

(b) Statement. Suppose $f: \mathbb{R}^p \to \mathbb{R}^q$ is continuous. Then $E = \{x \in \mathbb{R}^p : ||f(x)|| \le 1\}$ is a connected set.

FALSE! Let $f : \mathbf{R} \to \mathbf{R}$ be given by $f(x) = x^2 - 2$ which is polynomial, hence continuous. Then $E = f^{-1}([-1, 1]) = [-\sqrt{3}, -1] \cup [1, \sqrt{3}]$ which is not connected.

(c) Statement. Let $E \subseteq \mathbb{R}^p$ and $\{x_k\}$ is a sequence in the boundary ∂E . If the sequence converges to a point $\mathbf{x}_k \to \mathbf{x}$ in \mathbf{R}^p , then $\mathbf{x} \in \partial E$.

TRUE! The boundary $\partial E = \overline{E} - E^0 = \overline{E} \cap (E^0)^c$ is closed because it is the intersection of the closure, which is a closed set, and the complement of the interior, which is a closed set because it is the complement of an open set. But a closed set contains limits of sequences from the set.