Math 3220 § 1.	Second Midterm Exam	Name:	Solutions
Treibergs $a \tau$		Septemb	per 5, 2007

- 1. (a) Definition: $E \subseteq \mathbf{R}^p$ is an open set if for every $\mathbf{x} \in E$ there is a $\delta > 0$ so that the entire δ -ball about \mathbf{x} is in E: $(\forall \mathbf{x} \in E)(\exists \delta > 0)(B_{\delta}(\mathbf{x}) \subseteq E)$.
 - (b) Theorem. $E = \{(x, y) \in \mathbb{R}^2 : 1 < x < 2\}$ is an open set. Proof. Choose $(x_0, y_0) \in E$. Let $\delta = \min\{x_0 - 1, 2 - x_0\}$. (This $\delta > 0$ is the distance from (x_0, y_0) to ∂E .) To show $B_{\delta}((x_0, y_0)) \subseteq E$, choose $(u, v) \in B_{\delta}((x_0, y_0))$ which means $||(x_0, y_0) - (u, v)|| < \delta$. We need to conclude 1 < u < 2 so $(u, v) \in E$. Because $\delta \le x_0 - 1$, we have $u = x_0 - (x_0 - u) \ge x_0 - ||(x_0, y_0) - (u, v)|| > x_0 - \delta \ge x_0 - (x_0 - 1) = 1$. Also because $\delta \le 2 - x_0$ we have $u = x_0 - (x_0 - u) \le x_0 + ||(x_0, y_0) - (u, v)|| < x_0 + \delta \le x_0 + (2 - x_0) = 2$. Thus 1 < u < 2 so $B_{\delta}((x_0, y_0)) \subseteq E$.
- 2. (a) Definition: $f : \mathbf{R}^2 \to \mathbf{R}$ is continuous at $(x_0, y_0) \in \mathbf{R}^2$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that $|f(x_0, y_0) f(u, v)| < \varepsilon$ whenever $(u, v) \in \mathbf{R}^2$ and $||(x_0, y_0) (u, v)|| < \delta$.
 - (b) Theorem. $f(x,y) = xy^2$ is continuous at (x_0, y_0) .

Proof. Choose $\varepsilon > 0$. Let $\delta = \min\{1, \frac{1}{3}(1+2||(x_0, y_0)||)^{-2}\varepsilon\}$. Then if $(u, v) \in \mathbf{R}^2$ such that $||(u, v) - (x_0, y_0)|| < \delta$ we have $|v| \le |v - y_0| + |y_0| \le ||(u, v) - (x_0, y_0)|| + |y_0| < \delta + |y_0| \le 1 + |y_0|$ because $\delta \le 1$. Hence also $|v + y_0| \le |v| + |y_0| \le 1 + 2|y_0|$. Thus, for such (u, v),

$$\begin{aligned} |f(u,v) - f(x_0,y_0)| &= |uv^2 - x_0y_0^2| \\ &= |uv^2 - x_0v^2 + x_0v^2 - x_0y_0^2| \\ &\leq |u - x_0| |v|^2 + |x_0| |v + y_0| |v - y_0| \\ &\leq \left((1 + |y_0|)^2 + |x_0| (1 + 2|y_0|) \right) \|(u,v) - (x_0,y_0)\| \\ &< 2 \left(1 + 2\|(x_0,y_0)\| \right)^2 \delta \\ &\leq \varepsilon. \end{aligned}$$

- 3. Let $E \subseteq \mathbf{R}^p$, $f_n : E \to \mathbf{R}^q$ for all $n \in \mathbf{N}$ and $f : E \to \mathbf{R}^q$.
 - (a) Definition: f_n converges uniformly to f on E if for every $\varepsilon > 0$ there is a $N \in \mathbf{N}$ so that for all n > N and all $\mathbf{x} \in E$ we have $||f_n(\mathbf{x}) f(\mathbf{x})|| < \varepsilon$.
 - (b) Theorem. $f_n(x,y) = \frac{1}{1 + (x-n)^2 + y^2}$ converges pointwise to f = 0 on \mathbb{R}^2 but not uniformly.

Proof. Since $f_n = (1 + ||(x, y) - (n, 0)||^2)^{-1}$, we see that if n > 2||(x, y)|| then $||(x, y) - (n, 0)|| \ge ||(n, 0)|| - ||(x, y)|| > \frac{n}{2}$ so that then $|f_n(x, y) - 0| \le (1 + \frac{1}{4}n^2)^{-1} \to 0$ as $n \to \infty$. Thus $f_n \to 0$ pointwise on \mathbf{R}^2 .

But the convergence is not uniform. The negation of $f_n \to 0$ uniformly on \mathbb{R}^2 is: there is $\varepsilon_0 > 0$ so that for all $N \in \mathbb{N}$ there is n > N and $(u, v) \in \mathbb{R}^2$ so that $|f_n(u, v) - 0| \ge \varepsilon_0$. Let $\varepsilon = \frac{1}{2}$. Choose $N \in \mathbb{N}$. Let n = N + 1 and (u, v) = (n, 0). Then for this n and $(u, v), |f_n(u, v) - 0| = |1 - 0| = 1 \ge \varepsilon_0$.

- 4. (a) Definition: $K \subseteq \mathbf{R}^p$ is a compact set if every open cover of K has a finite subcover. That is, if $\{U_{\alpha}\}_{\alpha \in A}$ is any collection of open sets of \mathbf{R}^p such that $K \subseteq \bigcup_{\alpha \in A} U_{\alpha}$ then there are finitely many subscripts $\{\alpha_1, \ldots, \alpha_n\} \subseteq A$ such that $K \subseteq \bigcup_{i=1}^n U_{\alpha_i}$.
 - (b) Theorem. Let $E \subseteq \mathbf{R}^p$ be an infinite set. Suppose that every point of E is isolated: for every $\mathbf{x} \in E$ there is a $\delta > 0$ so that the only element of E that is in the open δ -ball about \mathbf{x} is \mathbf{x} itself: $(\forall \mathbf{x} \in E)(\exists \delta > 0)(B_{\delta}(\mathbf{x}) \cap E = \{\mathbf{x}\})$. Then E is not compact.

Proof. We exhibit an open cover of E which does not have a finite subcover, thus E fails to be compact. For each point $\mathbf{x} \in E$ let $\delta(\mathbf{x}) > 0$ be the radius of the isolation neighborhood. That is $E \cap B_{\delta(\mathbf{x})}(\mathbf{x}) = \{\mathbf{x}\}$. Consider the collection of open sets $\{B_{\delta(\mathbf{x})}(\mathbf{x})\}_{\mathbf{x}\in E}$. It is a cover of E since if $\mathbf{x} \in E$ then $\mathbf{x} \in B_{\delta(\mathbf{x})}(\mathbf{x})$. Hence $E \subseteq \bigcup_{\mathbf{x}\in E}B_{\delta(\mathbf{x})}(\mathbf{x})$. But it has no finite subcover. Otherwise there are finitely many $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\} \subseteq E$ such that $E \subseteq \bigcup_{i=1}^n B_{\delta(\mathbf{x}_i)}(\mathbf{x}_i)$. But since E is infinite, there is $\mathbf{y} \in E - \{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ which is not one of the \mathbf{x}_i 's. Hence $\mathbf{y} \notin B_{\delta(\mathbf{x}_i)}(\mathbf{x}_i)$ for all $i = 1,\ldots,n$. Thus $\mathbf{y} \notin \bigcup_{i=1}^n B_{\delta(\mathbf{x}_i)}(\mathbf{x}_i)$, which is a contradiction.

5. (a) Statement. Suppose $f : \mathbf{R}^p \to \mathbf{R}$ is continuous. Then $E = \{x \in \mathbf{R}^p : f(x) \le 0\}$ is a closed set.

TRUE! $C = (-\infty, 0]$ is a closed interval. Thus $E = f^{-1}(C)$ is closed because continuous functions pull back closed sets to closed sets.

(b) Statement. Suppose $f : \mathbf{R}^p \to \mathbf{R}^q$ is continuous. Then $E = \{x \in \mathbf{R}^p : ||f(x)|| \le 1\}$ is a connected set.

FALSE! Let $f : \mathbf{R} \to \mathbf{R}$ be given by $f(x) = x^2 - 2$ which is polynomial, hence continuous. Then $E = f^{-1}([-1, 1]) = [-\sqrt{3}, -1] \cup [1, \sqrt{3}]$ which is not connected.

(c) Statement. Let $E \subseteq \mathbf{R}^p$ and $\{\mathbf{x}_k\}$ is a sequence in the boundary ∂E . If the sequence converges to a point $\mathbf{x}_k \to \mathbf{x}$ in \mathbf{R}^p , then $\mathbf{x} \in \partial E$.

TRUE! The boundary $\partial E = \overline{E} - E^0 = \overline{E} \cap (E^0)^c$ is closed because it is the intersection of the closure, which is a closed set, and the complement of the interior, which is a closed set because it is the complement of an open set. But a closed set contains limits of sequences from the set.