Math 3220 § 1. Sample Problems for the Second Midterm Exam Name: Problems 20ith Golutions Treibergs α September 28. 2007

Questions 1–10 appeared in my Fall 2000 and Fall 2001 Math 3220 exams.

- (1) Let E be a subset of \mathbf{R}^n .
	- a. Define: E is open.
	- b. Let $\mathbf{a} \in \mathbb{R}^n$ and $r > 0$. Show that $E = {\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} \mathbf{a}|| > r}$ is open.
- (2) Let $E \in \mathbb{R}^n$.
	- a. Define the *closure*, \overline{E} .
	- b. Show that if $x \in \overline{E}$ then for every $\varepsilon > 0$, $B_{\varepsilon}(x) \cap E \neq \emptyset$. $(B_{\varepsilon}(x))$ is an open ε -ball about x.)
- (3) Suppose $E\subseteq F\subseteq {\bf R}^n$. Then the interiors satisfy $E^\circ\subseteq F^\circ$ and that the boundary is contained in the closure $\partial E \subseteq \overline{F}$.
- (4) Let $E = [0,1] \cap \mathbf{Q}$, the set of rational points between zero and one. Determine whether the set E is open, closed, or neither. Prove your answer.
- (5) Using just the definition of "open set" in \mathbb{R}^n , show that $E = \{(x, y) \in \mathbb{R}^2 : x > 0\}$. is an *open set*.
- (6) Prove if true, give a counterexample if false:
	- a. Let $E \subseteq \mathbb{R}^n$ and $G \subseteq E$ be relatively open. Then for any point $\mathbf{x} \in G$ there is a $\delta > 0$ so that the open δ-ball about x, B_δ (x) ∩ $E \subseteq G$.
	- b. Let $E \in \mathbb{R}^n$ be a set which is not open, and suppose $\{x_n\}$ is a sequence in E which converges $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{x}$ in \mathbf{R}^n . Then $\mathbf{x} \in E$.
- (7) Prove if true, give a counterexample if false:
	- a. Let $E \in \mathbb{R}^n$. If the boundary ∂E is connected then E is connected.
	- b. Let $E \subseteq \mathbb{R}^n$. A point is not in the closure $x \notin \overline{E}$ if and only if there is an open set $\mathcal{O} \subseteq \mathbb{R}^n$ such that $\mathbf{x} \in \mathcal{O}$ but $\mathcal{O} \cap E = \emptyset$.
	- c. Let $E \subseteq \mathbf{R}^n$. Then the interior points E° are relatively open in E .
- (8) Let $E = \{(x, y) \in \mathbf{R}^2 : x^2 + y^2 \le 2\}$. Using only the definition of connectedness, the fact that intervals are the only connected sets connected in ${\bf R}^1$, and properties of continuous functions, show that E is a connected subset of ${\bf R}^2.$
- (9) Prove if true, give a counterexample if false:
	- a. Let $f: \mathbf{R}^n \to \mathbf{R}^m$ be continuous and $G \subseteq \mathbf{R}^m$ be open. Then for any point $\mathbf{x} \in f^{-1}(G)$ there is a $\delta > 0$ so that the open δ -ball about ${\bf x},\ B_\delta({\bf x}) \subseteq f^{-1}(G).$
	- b. Let $\Omega \subseteq \mathbb{R}^n$ be open and $f : \Omega \to \mathbb{R}^m$ be continuous. Then $f(\Omega)$ is open.
	- c. Let $f: \mathbf{R}^n \to \mathbf{R}^m$ be continuous and $E \subseteq \mathbf{R}^m$. Suppose E is connected in \mathbf{R}^m . Then $f^{-1}(E)$ is connected in \mathbf{R}^n .
- (10) Let $K \subseteq \mathbf{R}^2$ be a compact set. Suppose $\{x_n\}_{n\in\mathbf{N}} \subseteq K$ is a sequence in K which is a Cauchy sequence in ${\bf R}^2$. Then there is a point ${\bf k} \in K$ so that ${\bf x}_n \to {\bf k}$ as $n \to \infty.$
- (11) Let L be a linear transformation $L: \mathbf{R}^n \to \mathbf{R}^m$ and let $f(\mathbf{x}) = L\mathbf{x}$. Suppose that $\{\mathbf{x}_k\}$ is a sequence in \mathbf{R}^n that converges $\mathbf{x}_k \to \mathbf{a}$ as $k \to \infty$. Show that $f(\mathbf{x}_k) \to f(\mathbf{a})$ as $k \to \infty$.
- (12) Suppose that $\{{\bf x}_k\}_{k\in \mathbf{N}}\subseteq \mathbf{R}^3$ is a bounded sequence of points. Show that there is a convergent subsequence. (You may assume the Bolzano-Weierstraß Theorem for \mathbf{R}^1 but not for \mathbf{R}^n .)
- (13) Let $\{x_k\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{R}^n . Prove that $x_k \to a$ as $k \to \infty$ if and only if for every open set $G \ni a$ there is an $N \in \mathbb{N}$ so that for every $k \in \mathbb{N}$, if $k \geq N$ then $\mathbf{x}_k \in G$.
- (14) Let $F \in \mathbb{R}^n$ be a set. Show that F is closed if and only if F contains all limits of sequences in F, that is, if $\{x_k\}_{k\in\mathbb{N}}$ is a sequence in F which converges in \mathbb{R}^n , *i.e.*, $x_k \to a$ as $k\to\infty$ to some $a \in \mathbb{R}^n$ then $\mathbf{a} \in F$.
- (15) Suppose $S_i \subseteq \mathbb{R}^n$ are closed nonempty sets which are contained in the compact set K. Assume that the subsets form a decreasing sequence $S_1 \supseteq S_2 \supseteq S_3 \supseteq \cdots$. Then they have a nonempty intersection $\bigcap_{i\in\mathbf{N}}S_i\neq\emptyset.$
- (16) $E = [0, 1] \cap \mathbf{Q}$, the set of rational points between zero and one, is not compact.
- (17) Theorem. Suppose $E \subseteq \mathbb{R}^n$ is bounded and $f : E \to \mathbb{R}^m$ is uniformly continuous. Then $f(E)$ is bounded. This would not be true if "uniformly continuous" were replaced by "continuous."
- (18) Theorem. Let $S = [0,1] \times [0,1] \subseteq \mathbb{R}^2$ and $F : S \to \mathbb{R}$ be continuous. Then F is not one to one.

Solutions.

(1.) Let E be a subset of \mathbb{R}^n . Definition : E is open if for every point $\mathbf{x} \in E$ there is an $\varepsilon > 0$ so that the open ε -ball about x is in E, namely $B_{\varepsilon}(\mathbf{x}) \subseteq E$.

Theorem. Let $\mathbf{a} \in \mathbb{R}^n$ and $r > 0$, then $E = \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{a}|| > r \}$ is open.

Proof. Choose $y \in E$. Then $||y - a|| > r$. Let $\varepsilon = ||y - a|| - r > 0$. Then I claim that $B_{\varepsilon}(y) \subseteq E$ so E is open. To see the claim, choose $\mathbf{z} \in B_\varepsilon(\mathbf{y})$. Then $\|\mathbf{z} - \mathbf{y}\| < \varepsilon$. By the triangle inequality $\|\mathbf{z} - \mathbf{a}\| =$ $\|z - y + y - a\| \ge \|y - a\| - \|z - y\| > \|y - a\| - \varepsilon = \|y - a\| - (\|y - a\| - r) = r$, hence, $z \in E$.

(2.) Let $E \subseteq \mathbb{R}^n$. Definition : The closure $\overline{E} = \bigcap \{F : F \subseteq \mathbb{R}^n \text{ is closed and } E \subseteq F\}$.

Theorem. If $\mathbf{x} \in \overline{E}$ then for every $\varepsilon > 0$ we have $B_{\varepsilon}(\mathbf{x}) \cap E \neq \emptyset$.

 $Proof.$ Suppose it is false for some ${\bf x}.$ Then there is an $\varepsilon_0>0$ and a ball $B_{\varepsilon_0}({\bf x})$ so that $B_{\varepsilon_0}({\bf x})\cap E=\emptyset.$ It follows that $E\subseteq F={\bf R}^n\backslash B_{\varepsilon_0}({\bf x})$ which is a closed set since it is the complement of the open ball, thus it is one of the F 's in the intersection definition of closure. Hence, $\overline{E}\subseteq F= {\bf R}^n\backslash B_{\varepsilon_0}({\bf x}).$ It follows that that $\overline{E}\cap B_{\varepsilon_0}(\mathbf{x})=\emptyset$ thus $\mathbf{x}\notin\overline{E}.$

(3.) Theorem. Suppose $E \subseteq F \subseteq \mathbf{R}^n$. Then the interiors satisfy $E \circ \subseteq F \circ$ and that the boundary is contained in the closure $\partial E \subseteq \overline{F}$.

Proof. Recall that the interior is $E^\circ = \cup \{G : G \subseteq \mathbf{R}^n \text{ is open and } G \subseteq E\}$. Thus if $\mathbf{x} \in E^\circ$ there is an open set $G \subseteq \mathbb{R}^n$ such that $\mathbf{x} \in G \subseteq E$. But $E \subseteq F$ so $G \subseteq F$ is an open set, which is included in the union $F^{\circ} = \cup \{G : G \subseteq \mathbf{R}^n \text{ is open and } G \subseteq F\}$. Thus $\mathbf{x} \in G \subseteq F^{\circ}$.

The closure is defined to be $\overline{F} = \cap \{C : C \subseteq \mathbb{R}^n \text{ is closed and } F \subseteq C\}$. The boundary is defined to be $\partial E = \overline{E} \setminus E^{\circ}$ which is contained in \overline{E} . Also $\overline{E} = \cap \{H : H \subseteq \mathbf{R}^n \text{ is closed and } E \subseteq H\}$. If $C \subseteq \mathbf{R}^n$ is any closed set such that $F \subseteq C$ then $E \subseteq F \subseteq C$ so all C's occur as one of the H's in the intersection definition of \overline{E} . It follows that $E \subseteq F$ whence $\partial E \subseteq E \subseteq F$.

(4.) Theorem. Let $E = [0, 1] \cap \mathbf{Q}$, the set of rational points between zero and one. The set E is neither open nor closed.

Proof. To show that E is not open, we show that it is not the case that for every $x \in E$, there exists a $\delta > 0$ so that the ball $B_\delta(x) \subseteq E$. This negation becomes: there is an $x \in E$ so that for every $\delta > 0$, $B_\delta(x)$ is not contained in E, in other words $B_\delta(x) \cap E^c \neq \emptyset$. Take the point $x = 1$ in E. For every $\delta > 0$ there is a number $y\in (1,1+\delta)\subseteq B_\delta(1)$. As $y>1$, so $y\notin E$. Thus for every $\delta>0$ we have produced $y\in B_\delta(1)\cap E^c$. So E is not open.

A set $E \in \mathbf{R}^n$ is closed if and only if its complement $E^c \subseteq \mathbf{R}^n$ is open. To show that E is not closed, we show that E^c is not open. Choose $z\in E^c$, say $z=\sqrt{2}-1\approx .414214\ldots$. By the density of rationals, for every $\delta > 0$ there is a rational number in the interval $q \in B_\delta(z) \cap (0,1)$. This number $q \in E$, thus, for every $\delta > 0$ there is $q \in B_\delta(z) \cap (E^c)^c$. Thus E^c is not open.

(5.) Theorem. Let $E = \{(x, y) \in \mathbb{R}^2 : x > 0\}$. Then E is an open set.

E is open if for every $(x, y) \in E$ there is $\varepsilon > 0$ so that $B_{\varepsilon}(x, y) \subseteq E$. Choose $(x, y) \in E$. Thus $x > 0$. Let $\varepsilon = x$. To show $B_{\varepsilon}(x, y) \subseteq E$, choose $(u, v) \in B_{\varepsilon}(x, y)$, thus $\|(x, y) - (u, v)\| < \varepsilon$. Now $u = x - (x - u) \ge$ $x - \| (x, y) - (u, v) \| > x - \varepsilon = x - x = 0$ hence $(u, v) \in E$ thus $B_{\varepsilon}(x, y) \subseteq E$.

(6a.) Statement : Let $E \subseteq \mathbb{R}^n$ and $G \subseteq E$ be relatively open. Then for any point $\mathbf{x} \in G$ there is a $\delta > 0$ so that the open δ -ball about x, $B_{\delta}(\mathbf{x}) \cap E \subseteq G$. TRUE!

Proof. $G \subseteq E$ relatively open means that there is an open set $\mathcal{O} \subseteq \mathbb{R}^n$ so that $G = \mathcal{O} \cap E$. But if $\mathbf{x} \in G \subseteq \mathcal{O}$ then there is $\delta > 0$ so that $B_{\delta}(\mathbf{x}) \subseteq \mathcal{O}$ and so $B_{\delta}(\mathbf{x}) \cap E \subseteq \mathcal{O} \cap E = G$.

(6b.) Statement : Let $E \in \mathbb{R}^n$ be a set which is not open, and suppose $\{x_n\}$ is a sequence in E which converges $\lim_{n\to\infty} \mathbf{x}_n = \mathbf{x}$ in \mathbf{R}^n . Then $\mathbf{x} \in E$. FALSE!

Let $E = (0,1] \subseteq \mathbf{R}$. E is not open since $(1 - \varepsilon, 1 + \varepsilon) \nsubseteq E$ all $\varepsilon > 0$. But $x_n = 1/n \in E$ for $n \in \mathbf{N}$, $x_n \to 0$ in **R** as $n \to \infty$ but $0 \notin E$.

(7a.) Statement. Let $E \in \mathbb{R}^n$. If the boundary ∂E is connected then E is connected. FALSE!

Let $E = \{x \in \mathbf{R} : x \neq 0\}$. Then $\partial E = \{0\}$ which is connected (since it is an interval) but $E = E_1 \cup E_2$ where $E_1 = \{x : x > 0\}$ and $E_2 = \{x : x < 0\}$ which are both open, disjoint and nonempty intervals, therefore separate E into two connected components.

(7b.) Statement. Let $E \subseteq \mathbb{R}^n$. A point is not in the closure $x \notin \overline{E}$ if and only if there is an open set $\mathcal{O} \subseteq \mathbb{R}^n$ such that $\mathbf{x} \in \mathcal{O}$ but $\mathcal{O} \cap E = \emptyset$. TRUE!

The closure is $\overline{E}=\bigcap\{F: F\subseteq \mathbf{R}^n \text{ is closed and } E\subseteq F.\}$. If x is not in this set then there is a closed set $F \subseteq \mathbf{R}^n$ such that $E \subseteq F$ and $\mathbf{x} \notin F$. Then the complement is open with $\mathbf{x} \in \mathcal{O} = \mathbf{R}^n \backslash F$ and $\mathcal{O} \cap E = \emptyset$ so O is the desired open set. On the other hand, if there is open $O \ni x$ such that $E \cap O = \emptyset$ then $F = \mathbb{R}^n \backslash O$ is closed and $E \subseteq F$. Because \overline{E} is defined as the intersection of such F's, it follows that $\overline{E} \subseteq F$. But $\mathbf{x} \notin F$ implies $\mathbf{x} \notin E$.

(7c.) Statement. Let $E \subseteq \mathbb{R}^n$. Then the interior points E° are relatively open in E. TRUE!

The interior is defined to be $E^\circ=\bigcup\{G: G\in \mathbf{R}^n$ is open and $G\subseteq E\}$, thus is the union of open sets so is open in ${\bf R}^n.$ Also, $E^\circ\subseteq E$ follows. Now E° is relatively open in E if there is an open set ${\cal O}\subseteq {\bf R}^n$ so that $E^{\circ} = E \cap \mathcal{O}$. But this follows by setting $\mathcal{O} = E^{\circ}$ which is an open set in \mathbb{R}^n and because $E^{\circ} \subseteq E$. Hence $E \cap \mathcal{O} = E \cap E^{\circ} = E^{\circ}.$

(8.) Let $E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2\}$. Using only the definition of connectedness, the fact that intervals are the only connected sets connected in ${\bf R}^1$, and properties of continuous functions, show that E is a connected subset of \mathbf{R}^2 .

The set E is path connected. For example if $x, y \in E$ then $f : [0, 1] \to E$ given by $f(t) = (1 - t)x + ty$ is a continuous path in E. In fact, for $0\le t\le 1$ and using the Schwarz Inequality, $\|f(t)\|^2=(1-t)^2\|x\|^2+2t(1-t)^2$ $|tx\cdot y + t^2\|y\|^2 \leq (1-t)^2\|x\|^2 + 2t(1-t)\|x\|\|y\| + t^2\|y\|^2 = \left((1-t)\|x\| + t\|y\|\right)^2 < \left(2(1-t) + 2t\right)^2 = 4$ so $f(t) \in E$. The components of f are polynomial so f is continuous.

Since E is path connected, it is connected. If not there are relatively open sets A_1, A_2 in E so that $A_1 \neq \emptyset$, $A_2\neq\emptyset$, $A_1\cap A_2=\emptyset$ and $E=A_1\cup A_2$. Choose $x\in A_1$ and $y\in A_2$ and a path $\sigma:[0,1]\to E$ so that $\sigma(0)=x$ and $\sigma(1)=y$. $\sigma^{-1}(A_1)$ and $\sigma^{-1}(A_2)$ are relatively open in $[0,1]$, are disjoint because $A_1\cap A_2=\emptyset$ implies $\sigma^{-1}(A_1)\cap\sigma^{-1}(A_2)=\sigma^{-1}(A_1\cap A_2)=\emptyset$, are nonempty because there are $x\in\sigma^{-1}(A_1)$ and $y\in\sigma^{-1}(A_2)$ and $[0,1]\subseteq\sigma^{-1}(A_1)\cup\sigma^{-1}(A_2)=\sigma^{-1}(A_1\cup A_2)=\sigma^{-1}(E)$. Thus $\sigma^{-1}(A_1)$ and $\sigma^{-1}(A_2)$ disconnect $[0,1]$, which is a contradiction because [0, 1] is connected.

(9.) For each part, determine whether the statement is TRUE or FALSE.

(9a.) Statement. Let $f: \mathbf{R}^n \to \mathbf{R}^m$ be continuous and $G \subseteq \mathbf{R}^m$ be open. Then for any point $\mathbf{x} \in f^{-1}(G)$ there is a $\delta>0$ so that the open δ -ball about ${\bf x},\ B_\delta({\bf x})\subseteq f^{-1}(G).$

TRUE! Since G is open, there is $\varepsilon > 0$ so that $B_{\varepsilon}(f(\mathbf{x})) \subseteq G$. But, since f is continuous, for all positive numbers, such as this $\varepsilon > 0$, there is a $\delta > 0$ so that for all $\mathbf{z} \in \mathbb{R}^n$, if $\|\mathbf{z} - \mathbf{x}\| < \delta$ then $\|f(\mathbf{z}) - f(\mathbf{x})\| < \varepsilon$. We claim that for this $\delta>0$, $B_\delta({\bf x})\subseteq f^{-1}(G)$. To see it, choose ${\bf z}\in B_\delta({\bf x})$ to show $f({\bf z})\in G$. But such ${\bf z}$ satisfies $\|\mathbf{z} - \mathbf{x}\| < \delta$ so that $\|f(\mathbf{z}) - f(\mathbf{x})\| < \varepsilon$ or in other words, $f(\mathbf{z}) \in B_{\varepsilon}(f(\mathbf{x})) \subseteq G$.

(9b.) Statement. Let $\Omega \subseteq \mathbb{R}^n$ be open and $f : \Omega \to \mathbb{R}^m$ be continuous. Then $f(\Omega)$ is open.

FALSE! Counterexample: the constant function $f(x) = c$ is continuous but $f(\Omega) = \{c\}$ is a singleton set which is not open.

(9c.) Statement. Let $f: \mathbf{R}^n \to \mathbf{R}^m$ be continuous and $E \subseteq \mathbf{R}^m$. Suppose E is connected in \mathbf{R}^m . Then $f^{-1}(E)$ is connected in ${\bf R}^n.$

FALSE! Counterexample: $f(x) = x^2$ is continuous from **R** to **R** but $f^{-1}([1, 4]) = [-2, -1] \cup [1, 2]$.

(10.) Let $K \subseteq \mathbb{R}^2$ be a compact set. Suppose $\{x_n\}_{n\in\mathbb{N}} \subseteq K$ is a sequence in K which is a Cauchy sequence in ${\bf R}^2$. Then there is a point ${\bf k}\in K$ so that ${\bf x}_n\to{\bf k}$ as $n\to\infty.$

Since $\{{\bf x}_n\}$ is Cauchy, it is convergent in ${\bf R}^2$: there is a ${\bf k}\in{\bf R}^2$ so that ${\bf x}_n\to{\bf k}$ as $n\to\infty.$ But as K is compact it is closed. But a closed set contains its limit points, so $\mathbf{k} \in K$.

(11.) Theorem. Let L be a linear transformation $L: \mathbb{R}^n \to \mathbb{R}^m$ and let $f(\mathbf{x}) = L\mathbf{x}$. Suppose that $\{x_k\}$ is a sequence in \mathbf{R}^n that converges $\mathbf{x}_k \to \mathbf{a}$ as $k \to \infty$. Then $f(\mathbf{x}_k) \to f(\mathbf{a})$ as $k \to \infty$.

Proof. A linear transformation is given by matrix multiplication, thus there is a matrix $A = \{a_{ij}\}\$ with $i = 1, \ldots, m, j = 1, \ldots, n$ so that if $\mathbf{z} = (z(1), z(2), \ldots, z(n))$ then the *i*-th component of the value is $f(\mathbf{z})(i)=(A\mathbf{z})(i)=\sum_{j=1}^na_{ij}z(j).$ In other words, if \mathbf{a}_i denotes the i -th row of A , then the $f(\mathbf{z})(i)=\mathbf{a}_i\cdot\mathbf{z}.$ This means that $|f(\mathbf{z})(i)|\leq \|\mathbf{a}_i\|$ $\|\mathbf{z}\|$ by the Cauchy Schwarz inequality. Hence $\|f(\mathbf{z})\|^2=\sum_{i=1}^m|f(\mathbf{z})(i)|^2\leq M^2\,\|\mathbf{z}\|^2$ where $M^2=\sum_{i=1}^m\|\mathbf{a}_i\|^2$ is a constant depending on L only. To prove that $f(\mathbf{x}_k)\to f(\mathbf{a})$ as $k\to\infty$, we must show that for every $\varepsilon > 0$, there is an $N \in \mathbb{N}$ so that for every $k \ge N$, we have $||f(\mathbf{x}_k) - f(\mathbf{a})|| < \varepsilon$. Now,

choose $\varepsilon>0.$ By the fact that ${\bf x}_k$ converges, there is an $N\in{\bf N}$ so that if $k\ge N$ then $\|{\bf x}_k-{\bf a}\|<\varepsilon(1+M)^{-1}.$ For this N, if $k \geq N$ then by linearity,

$$
||f(\mathbf{x}_k)-f(\mathbf{a})||=||A\mathbf{x}_k-A\mathbf{a}||=||A(\mathbf{x}_k-\mathbf{a})||\leq M||\mathbf{x}_k-\mathbf{a}||\leq \frac{M\varepsilon}{1+M}<\varepsilon.
$$

(12.) $Theorem.$ Suppose that $\{{\bf x}_k\}_{k\in \mathbf{N}}\subseteq \mathbf{R}^3$ is a bounded sequence of points. Then there it has a convergent subsequence.

Proof. Using the boundedness, that there is $M < \infty$ so that $\|\mathbf{x}_k\| \leq M$ for all k, we obtain that the p-th coefficient sequence is bounded because $|\mathbf{x}_k(p)| \leq ||\mathbf{x}_k|| \leq M$ for all k and p. As the sequence $\{\mathbf{x}_k(1)\}$ is bounded, by the Bolzano-Weierstraß Theorem in ${\bf R}^1$, there is a subsequence $k_i\to\infty$ as $i\to\infty$ so that ${\bf x}_{k_i}(1)\to {\bf a}(1)$ converges to some real number as $i\to\infty.$ As the sequence $\{{\bf x}_{k_i}(2)\}$ is also bounded, by BW again, there is a subsubsequence $k_{i_j}\to\infty$ as $j\to\infty$ so that ${\bf x}_{k_{i_j}}(2)\to{\bf a}(2)$ converges as $j\to\infty.$ We can repeat this one last time. As the sequence $\{{\bf x}_{k_{i_j}}(3)\}$ is also bounded, by BW again, there is a subsubsubsequence $k_{i_{j_\ell}}\to\infty$ as $\ell\to\infty$ so that ${\bf x}_{k_{i_{j_\ell}}}(3)\to{\bf a}(3)$ converges as $\ell\to\infty.$ Since the a subsequence of a convergent sequence is convergent, also ${\bf x}_{k_{i_{j_\ell}}}(1)\to {\bf a}(1)$ and ${\bf x}_{k_{i_{j_\ell}}}(2)\to {\bf a}(2)$ as $\ell\to\infty.$ Now, using the theorem that a sequence in ${\bf R}^3$ converges if and only if all of the sequences of components converge, we get that ${\bf x}_{k_{i_{j_\ell}}}\to {\bf a}$ in ${\bf R}^3$ as $\ell\to\infty$. (Usually, since subscripts of subscripts are frowned upon in typography, we denote subsequences by $k' = k_i$, $k'' = k_{i_j}$ and $k''' = k_{i_{j_\ell}}$ or something similar.)

(13.) Theorem. Let $\{x_k\}_{k\in \mathbf{N}}$ be a sequence in \mathbf{R}^n . $x_k\to a$ as $k\to\infty$ if and only if for every open set $G\ni a$ there is an $N \in \mathbf{N}$ so that for every $k \in \mathbf{N}$, if $k \geq N$ then $\mathbf{x}_k \in G$.

Proof. Assume that $x_k \to a$ as $k \to \infty$, namely, for every $\varepsilon > 0$ there is and $N \in \mathbb{N}$ so that for every $k \geq N$ we have $\|\mathbf{x}_k - \mathbf{a}\| < \varepsilon$. Now, choose an open set $G \in \mathbb{R}^n$ which contains $\mathbf{a} \in G$. As G is an open set, there is a δ > 0 so that the δ-ball about a satisfies $B_\delta({\bf a})\subseteq G$. Now using $\varepsilon=\delta$ in the statement of convergence, there is an $N \in \mathbb{N}$ so that for every $k \geq N$, \mathbf{x}_k is close to a so that $\|\mathbf{x}_k - \mathbf{a}\| < \delta$. In other words, $\mathbf{x}_k \in B_\delta(\mathbf{a}) \subseteq G$, as claimed.

To show the other direction, assume that for every open $G \ni a$, there is $N \in \mathbb{N}$ so that for every $k \geq N$, $x_k \in G$. Choose $\varepsilon > 0$. Let $G = B_{\varepsilon}(\mathbf{a})$. As the ball is open, there is an $N \in \mathbb{N}$ so that $k \geq N$ implies $x_k \in G$. Thus $k \geq N$ implies $\|\mathbf{x}_k - \mathbf{a}\| < \varepsilon$. Hence the definition of $\mathbf{x}_k \to \mathbf{a}$ as $k \to \infty$ is satisfied.

(14.) Theorem. Let $F \in \mathbb{R}^n$ be a set. F is closed if and only if F contains all limits of sequences from F. That is, if $\{x_k\}_{k\in\mathbb{N}}$ is a sequence in F which converges in \mathbb{R}^n , *i.e.*, $x_k \to a$ as $k \to \infty$ to some $a \in \mathbb{R}^n$ then $a \in F$.

Proof. First we argue that a closed set contains its limit points. Suppose we are given a sequence $\{x_k\}_{k\in\mathbb{N}}$ in F which converges in \mathbf{R}^n , i.e., $\mathbf{x}_k \to \mathbf{a}$ as $k \to \infty$ which means for every $\varepsilon > 0$ there is and $N \in \mathbf{N}$ so that for every $k \geq N$ we have $\|\mathbf{x}_k - \mathbf{a}\| < \varepsilon$. We are to show that $\mathbf{a} \in F$. Suppose that it is not the case. Then $a\in F^c$, which is an open set. By the definition of F^c being an open set, there is a $\delta>0$ so that $B_\delta(\mathbf{a})\subseteq F^c$. This contradicts the assumption that the sequence from F approaches a, for we have shown that there exists a $\delta>0$ so that for all $N\in \mathbf{N}$ there is a $k\geq N$, say $k=N$, so that $\|\mathbf{x}_k-\mathbf{a}\|\geq \delta$ because $\mathbf{x}_k\notin F^c.$

Next we argue that if a set F contains its limit points, then it must be closed. F is closed if and only if its complement F^c is open. Argue by contrapositive. Suppose that F is not closed so F^c is not open. That is, it is not the case that for every $\mathbf{a}\in F^c$ there exists an $\varepsilon>0$ so that $B_\varepsilon(\mathbf{a})\subseteq F^c$. Equivalently, there is an $\mathbf{a}\in F^c$ so that for every $\varepsilon > 0$ there is $\mathbf{x} \in B_{\varepsilon}(\mathbf{a}) \cap F$. Taking $\varepsilon = 1/k$, there is an $\mathbf{x}_k \in B_{1/k}(\mathbf{a}) \cap F$, which is to say $\|\mathbf{x}_k - \mathbf{a}\| < 1/k$. Thus we have found a sequece $\{\mathbf{x}_k\}$ in F such that $\mathbf{x}_k \to \mathbf{a}$ in \mathbf{R}^n as $k \to \infty$, but $\mathbf{a} \notin F$. In other words, F does not contain one of its limit points.

(15.) Theorem. Suppose $S_i \subseteq \mathbb{R}^n$ are closed nonempty sets which are contained in the compact set K. Assume that the subsets form a decreasing sequence $S_1 \supseteq S_2 \supseteq S_3 \supseteq \cdots$. Then they have a nonempty intersection $\bigcap_{i\in\mathbf{N}}S_i\neq\emptyset.$

 $\bar{P}rop.$ Suppose it is false. Then $\bigcap_{i\in\mathbf{N}}S_i=\emptyset.$ Let $U_i=\mathbf{R}^n\backslash S_i$ which are open since S_i are closed. By deMogran's formula, $\cup_i U_i = \cup_i (\mathbf{R}^n \setminus S_i) = \mathbf{R}^n \setminus (\cap_i S_i) = \mathbf{R}^n \setminus \emptyset = \mathbf{R}^n$. Thus $\{U_i\}$ is an open cover of K. Since K is compact, there are finitely many i_1,i_2,\ldots,i_n so that $K\subseteq U_{i_1}\cup\cdots\cup U_{i_n}=(\mathbf{R}^n\backslash S_{i_1})\cup\cdots\cup(\mathbf{R}^n\backslash S_{i_n})=$ ${\bf R}^n\backslash\left(S_{i_1}\cap\cdots\cap S_{i_n}\right)={\bf R}^n\backslash S_p$ where $p=\max\{i_1,\ldots,i_n\}$ since the S_i 's are nested. But this says $K\cap S_p=\emptyset$ which contradicts the assumption that S_p is a nonempty subset of K.

(16.) Theorem. $E = [0, 1] \cap \mathbf{Q}$, the set of rational points between zero and one, is not compact.

Proof. We find an open cover without finite subcover. Let $c = 1/\sqrt{2}$ or any other irrational number $c \in [0,1]$. Consider the sets $U_0 = (c, \infty)$ and $U_i = (-\infty, c - 1/i)$ for $i \in \mathbb{N}$. Then $\mathcal{C} = \{U_i\}_{i=0,1,2,\dots}$ is an open cover. For if $x \in E$, since x is rational, $x \neq c$. If $x > c$ then $x \in U_0$. If $x < c$, by the Archimidean property, there is an $i\in\mathbf{N}$ so that $1/i < c-x.$ It follows that $c-1/i > x$ so $x\in U_i.$ On the other hand no finite collection will cover. Indeed, if we choose any finite cover it would have to include U_0 to cover $1 \in E$ and therefore take the form $\{U_0,U_{i_1},\ldots,U_{i_J}\}$ for a finite set of numbers $i_1,\ldots,i_J\in{\bf N}.$ Hence if $K=\max\{i_1,\ldots,i_J\}$ then $U_0\cup U_{i_1}\cup\ldots\cup U_{i_J} = (-\infty, c-1/K)\cup (c,\infty)$. But in the gap $[c-1/K, c]$ there are rational numbers, by the density of rationals. Thus $E\not\subseteq U_0\cup U_{i_1}\cup\ldots\cup U_{i_J}.$ (Of course the easy argument is to observe that E is not closed so can't be compact.)

(17.) Theorem. Suppose $E \subseteq \mathbb{R}^n$ is bounded and $f : E \to \mathbb{R}^m$ is uniformly continuous. Then $f(E)$ is bounded. This would not be true if "uniformly continuous" were replaced by "continuous."

Proof. One idea is to divide E into finitely many little pieces so that f doesn't vary very much on any one of them. Then the bound on f is basically the max of bounds at one point for each little piece. f is uniformly continuous if for every $\varepsilon > 0$ there is a $\delta > 0$ so that if $x, y \in E$ such that $||x - y|| < \delta$ then $||f(x) - f(y)|| < \varepsilon$. Fix an $\varepsilon_0 > 0$ and let uniform continuity give $\delta_0 > 0$. Since E is bounded, there is an $R < \infty$ so that $E\subseteq B_R(0)$. Finitely many $\delta_0/2$ balls are required to cover $B_R(0)$, that is, there are points $\mathbf{x}_i\in\mathbb{R}^n$ so that $B_R(0) \subseteq \cup_{i=1}^J B_{\delta_0/2}(\mathbf{x}_i)$. This can be accomplished by chopping the ball into small enough cubes and taking ${\bf x}_i$'s as the centers of the cubes. $e.g.$, the cube $[-\delta_0/5\sqrt{n},\delta_0/5\sqrt{n}]\times\cdots\times[-\delta_0/5\sqrt{n},\delta_0/5\sqrt{n}]\subseteq B_{\delta_0/2}({\bf 0}).$ Choose points of E in those balls that meet E. Let $\mathcal{I} = \{i \in \{1,\ldots,J\} : B_{\delta_0/2}(x_i) \cap E \neq \emptyset\}$ and choose $y_i \in B_{\delta_0/2}(x_i) \cap E$ if $i \in \mathcal{I}$. Let $M = \max\{||f(y_i)|| : i \in \mathcal{I}\}$ be the largest norm among the points y_i in $E.$ Then the claim is that $f(E)\,\subseteq\, B_{M+\varepsilon_0}(0).$ To see this, choose ${\bf z}\,\in\, E.$ Since E is in the union of little balls, there is an index $j \in \mathcal{I}$ so that $\mathbf{z} \in B_{\delta_0/2}(\mathbf{x}_j)$. Since $\mathbf{y}_j \in B_{\delta_0/2}(\mathbf{x}_j)$ also, it follows that $||\mathbf{z} - \mathbf{y}_j|| = ||\mathbf{z} - \mathbf{x}_j + \mathbf{x}_j - \mathbf{y}_j|| \le ||\mathbf{z} - \mathbf{x}_j|| + ||\mathbf{x}_j - \mathbf{y}_j|| < \delta_0/2 + \delta_0/2 = \delta_0$. By the uniform continuity, $||f(\mathbf{y}_j) - f(\mathbf{z})|| < \varepsilon_0$. It follows that $||f(\mathbf{z})|| = ||f(\mathbf{z}) - f(\mathbf{y}_j) + f(\mathbf{y}_j)|| \le ||f(\mathbf{z}) - f(\mathbf{y}_j)|| + ||f(\mathbf{y}_j)|| < \varepsilon_0 + M$ and we are done.

The result doesn't hold if f is not uniformly continuous. Let $E\,=\,B_1(0)\backslash\{0\}$ and $f(\mathbf{x})\,=\,\|\mathbf{x}\|^{-1}.$ $\,f$ is continuous on E but $f(E) = (1, \infty)$ is unbounded.

(18.) Theorem. Let $S = [0,1] \times [0,1] \subseteq \mathbb{R}^2$ and $F : S \to \mathbb{R}$ be continuous. Then F is not one to one.

Proof. (There are probably many other more imaginative ways to show this.) Consider the circle $\sigma(t)$ = $(\frac{1}{2} + \frac{1}{2}\sin t, \frac{1}{2} + \frac{1}{2}\cos t) \in S$ as $t \in [0, 2\pi]$. Then $f(t) = F(\sigma(t))$ is a periodic continuous function. If f is constant then $F(\sigma(0)) = F(\sigma(\pi))$ so F is not $1 - 1$. If f is not constant, since $[0, 2\pi]$ is compact, there are points $\theta_0, \theta_1 \in [0, 2\pi]$ where $f(\theta_0) = \inf\{f(t) : t \in [0, 2\pi]\}\$ and $f(\theta_1) = \sup\{f(t) : t \in [0, 2\pi]\}\$. Also $f(\theta_0) < f(\theta_1)$. For convenience, suppose $\theta_0 < \theta_1$. The point is that the curves $\sigma((\theta_0, \theta_1))$ and $\sigma((\theta_1, \theta_0 + 2\pi))$ are two opposite arcs of the circle running from the minimum of f on the circle to the maximum. And any intermediate value gets taken on at least once in each arc, thus there are two point where f is equal and F is therefore not $1 - 1$. More precisely, choose any number $f(\theta_0) < y < f(\theta_1)$. By the intermediate value theorem applied to $f : [\theta_0, \theta_1] \to \mathbf{R}$, there is $\theta_3 \in (\theta_0, \theta_1)$ so that $f(\theta_3) = y$. Also by the intermediate value theorem applied to $f : [\theta_1, \theta_0 + 2\pi] \to \mathbf{R}$, there is $\theta_4 \in (\theta_1, \theta_0 + 2\pi)$ so that $f(\theta_4) = y$. Since $\sigma(\theta_3) \neq \sigma(\theta_4)$ because $0 = \theta_1 - \theta_1 < \theta_4 - \theta_3 < \theta_0 + 2\pi - \theta_0 = 2\pi$, it follows that F is not $1 - 1$ since $F(\sigma(\theta_3)) = F(\sigma(\theta_4))$. The case $\theta_0 > \theta_1$ is similar.