Math 3220 § 1. Sample Problems for the Second Midterm Exam Name: Problems 2Jith Solutions
Treibergsar September 28. 2007

Questions 1-10 appeared in my Fall 2000 and Fall 2001 Math 3220 exams.

(1) Let E be a subset of R".
a. Define: E is open.
b. Let a € R™ and r > 0. Show that E = {x € R" : ||x — a|| > r} is open.
(2) Let E € R™.
a. Define the closure, E.
b. Show that if x € E then for every € > 0, B.(x) N E # 0. (B-(x) is an open e-ball about x.)
(3) Suppose E C F C R™. Then the interiors satisfy £° C F° and that the boundary is contained in the
closure 9F C F.
(4) Let E = [0,1] N Q, the set of rational points between zero and one. Determine whether the set E is
open, closed, or neither. Prove your answer.
(5) Using just the definition of “open set” in R™, show that E = {(x,y) € R?: > 0}. is an open set.
(6) Prove if true, give a counterexample if false:
a. Let F CR™ and G C FE be relatively open. Then for any point x € G there is a § > 0 so that the
open §-ball about x, Bs(x) N E C G.
b. Let E € R™ be a set which is not open, and suppose {x,} is a sequence in E which converges
lim x, =xin R™. Thenx € E.

n—oo

(7) Prove if true, give a counterexample if false:
a. Let F € R"™. If the boundary OF is connected then E is connected.
b. Let £ C R™. A point is not in the closure x ¢ E if and only if there is an open set O C R" such
thatx € O but ONE = 0.
c. Let E C R"™. Then the interior points E° are relatively open in E.

(8) Let E = {(z,y) € R?: 2% + y? < 2}. Using only the definition of connectedness, the fact that intervals
are the only connected sets connected in R!, and properties of continuous functions, show that FE is a
connected subset of R2.

(9) Prove if true, give a counterexample if false:

a. Let f: R™ — R™ be continuous and G C R™ be open. Then for any point x € f~!(G) there is
a § > 0 so that the open §-ball about x, Bs(x) C f~}(G).
b. Let @ C R™ be open and f : @ — R™ be continuous. Then f(Q) is open.
c. Let f: R™ — R™ be continuous and E C R™. Suppose E is connected in R™. Then f~1(E) is
connected in R™.
(10) Let K C R? be a compact set. Suppose {x, }nen € K is a sequence in K which is a Cauchy sequence
in R2. Then there is a point k € K so that x,, — k as n — oco.

(11) Let L be a linear transformation L : R™ — R™ and let f(x) = Lx. Suppose that {x;} is a sequence in
R™ that converges x; — a as k — oco. Show that f(xx) — f(a) as k — oo.

(12) Suppose that {x;}ren € R? is a bounded sequence of points. Show that there is a convergent subse-
quence. (You may assume the Bolzano-WeierstraB Theorem for R! but not for R".)

(13) Let {xx}ren be a sequence in R™. Prove that x; — a as k — oo if and only if for every open set G 3 a
there is an N € N so that for every k € N, if k£ > N then x; € G.

(14) Let F € R" be a set. Show that F is closed if and only if F' contains all limits of sequences in F, that
is, if {xx}ren is a sequence in F' which converges in R", i.e., x;; — a as k — oo to some a € R" then

acfl.

(15) Suppose S; C R™ are closed nonempty sets which are contained in the compact set K. Assume that
the subsets form a decreasing sequence S; O S O S3 D ---. Then they have a nonempty intersection
Nien Si # 0.

(16) E =10,1]N Q, the set of rational points between zero and one, is not compact.

(17) Theorem. Suppose E C R™ is bounded and f : E — R™ is uniformly continuous. Then f(E) is
bounded. This would not be true if “uniformly continuous” were replaced by “continuous.”

(18) Theorem. Let S =[0,1] x [0,1] CR? and F': S — R be continuous. Then F is not one to one.
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Solutions.
(1.) Let E be a subset of R™. Definition : E is open if for every point x € E there is an € > 0 so that the
open e-ball about x is in E, namely B.(x) C E.

Theorem. Let a € R™ and r > 0, then E = {x € R" : ||x — a|| > r} is open.

Proof. Choose y € E. Then |y —a| > . Lete = [y —al| =7 > 0. Then | claim that B.(y) C E so
E is open. To see the claim, choose z € B.(y). Then ||z — y|| < €. By the triangle inequality ||z — a| =
lz—y+y—-alzly—-al-lz-yl>ly—-al-¢=ly—all - (ly —al —r) =r, hence, z € E.

(2.) Let E C R™. Definition : The closure E =N{F : F C R" is closed and E C F'}.

Theorem. If x € E then for every € > 0 we have B.(x) N E # 0.

Proof. Suppose it is false for some x. Then there is an g9 > 0 and a ball B, (x) so that B.,(x) N E = .
It follows that E C F' = R"™\B,,(x) which is a closed set since it is the complement of the open ball, thus it
is one of the F's in the intersection definition of closure. Hence, E C F = R"\B.,(x). It follows that that
ENB.(x)=0thusx ¢ E.

(3.) Theorem. Suppose E C F C R™. Then the interiors satisfy E° C F° and that the boundary is contained
in the closure OE C F.

Proof. Recall that the interior is E° = U{G : G CR" isopen and G C E}. Thus if x € E° there is an
open set G C R"™ such that x €« G C FE. But E C F so G C F is an open set, which is included in the union
Fe=U{G:GCR"isopenand G C F}. Thusx € G C F°.

The closure is defined to be F' = N{C : C C R" isclosed and F' C C}. The boundary is defined to be
OF = E\E° which is contained in E. Also E =N{H : H C R" is closed and E C H}. If C C R" is any closed
set such that F C C then E C F C C so all C's occur as one of the H's in the intersection definition of E. It
follows that £ C F whence )E C E C F.

(4.) Theorem. Let E = [0,1] N Q, the set of rational points between zero and one. The set E is neither open
nor closed.

Proof. To show that E is not open, we show that it is not the case that for every x € F, there exists a § > 0
so that the ball Bs(x) C E. This negation becomes: there is an € E so that for every § > 0, B;s(z) is not
contained in E, in other words Bjs(z) N E€ # (). Take the point x =1 in E. For every § > 0 there is a number
y€ (1,149) C Bs(1). Asy>1,s0y ¢ E. Thus for every § > 0 we have produced y € Bs(1) N E€. So E is
not open.

A set E € R" is closed if and only if its complement ¢ C R" is open. To show that E is not closed, we
show that E°¢ is not open. Choose z € E°, say z = /2 — 1 ~ .414214 . ... By the density of rationals, for every
d > 0 there is a rational number in the interval ¢ € Bs(z) N (0,1). This number ¢ € E, thus, for every § > 0
there is ¢ € Bs(z) N (E°)¢. Thus E€ is not open.

(5.) Theorem. Let E = {(x,y) € R* : & > 0}. Then E is an open set.

E is open if for every (x,y) € E there is ¢ > 0 so that B.(x,y) C E. Choose (z,y) € E. Thus x > 0. Let
e = x. To show B.(z,y) C FE, choose (u,v) € Be(x,y), thus |[(z,y) — (u,v)]]| <e. Now u =2 — (. —u) >
x— ||(z,y) — (u,v)|]| > —e =2 —2 =0 hence (u,v) € E thus B.(z,y) C E.

(6a.) Statement : Let E C R™ and G C FE be relatively open. Then for any point x € G thereis a § > 0 so
that the open d-ball about x, Bs(x) N E C G. TRUE!

Proof. G C E relatively open means that there is an open set O C R" sothat G = ONE. Butifxe G C O
then there is § > 0 so that Bs(x) C O and so Bs(x) NECONE =G.

(6b.) Statement : Let E € R™ be a set which is not open, and suppose {x,} is a sequence in E which converges
lim x, =x in R™ Then x € E. FALSE!

n—oo

Let E=(0,1] CR. Eisnotopensince (1—¢,14+¢)Z Ealle >0. Butz, =1/ne€ EforneN, z, —0
inRasn—oobut0¢E.

(7a.) Statement. Let E € R™. If the boundary JF is connected then E is connected. FALSE!

Let E = {z € R:a # 0}. Then OF = {0} which is connected (since it is an interval) but £ = E; U F»
where Fy = {z : > 0} and E2 = {x : © < 0} which are both open, disjoint and nonempty intervals, therefore
separate F into two connected components.
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(7b.) Statement. Let E C R™. A point is not in the closure x ¢ E if and only if there is an open set O C R"
such that x € O but ON E = (. TRUE!

The closure is E = ({{F : F CR" is closed and E C F.}. If x is not in this set then there is a closed set
F CR"™ such that E C F and x ¢ F. Then the complement is open with x € O = R"\F and ONFE = () so
O is the desired open set. On the other hand, if there is open O 3 x such that EN O = () then FF = R"\O
is closed and E C F. Because E is defined as the intersection of such F's, it follows that £ C F. But x ¢ F
implies x ¢ F.

(7c.) Statement. Let E C R™. Then the interior points E° are relatively open in E. TRUE!

The interior is defined to be E° = [J{G : G € R™ is open and G C E}, thus is the union of open sets so is
open in R™. Also, E° C FE follows. Now E° is relatively open in E if there is an open set O C R" so that
E° = ENO. But this follows by setting @ = E° which is an open set in R™ and because E° C E. Hence
ENO=FENE°=EFE"°.

(8.) Let E = {(x,y) € R? : 22 +y? < 2}. Using only the definition of connectedness, the fact that intervals
are the only connected sets connected in R, and properties of continuous functions, show that E is a connected
subset of R?.

The set E is path connected. For example if z,y € E then f :[0,1] — E given by f(t) = (1 —t)x +tyis a
continuous path in E. In fact, for 0 <t < 1 and using the Schwarz Inequality, || f(¢ )H2 (1 —1t)2||=]? + 2t(1 —
ta -y + llyll* < (1= )2l + 261 — &)z llyl| + 2llyll> = (1 = B)llz]l + thyl)* < (1 - 1) +2t)* = 4 50
f(t) € E. The components of f are polynomial so f is continuous.

Since E is path connected, it is connected. If not there are relatively open sets A, A in E so that A; # 0,
Ay #0, AiNAs =0 and E = A; U As. Choose 2z € Ay and y € As and a path ¢ : [0,1] — E so that 0(0) =«
and o(1) = y. o (A4;) and 07 1(Ay) are relatively open in [0,1], are disjoint because A; N Ay = () implies
o Y A) No Y (Az) = 071 (A; N Ay) = (0, are nonempty because there are x € 07 1(A;) and y € 0~1(A43) and
[0,1] Co7 (A1) Uo 1 (Az) =07 (A1 UA2) = 07 1(E). Thus 071(A;) and 071 (A3) disconnect [0, 1], which is
a contradiction because [0, 1] is connected.

(9.) For each part, determine whether the statement is TRUE or FALSE.
(9a.) Statement. Let f : R™ — R™ be continuous and G C R™ be open. Then for any point x € f~1(G)
there is a § > 0 so that the open d-ball about x, Bs(x) C f~}(G).

TRUE! Since G is open, there is ¢ > 0 so that B.(f(x)) € G. But, since f is continuous, for all positive
numbers, such as this € > 0, there is a § > 0 so that for all z € R", if ||z — x|| < d then ||f(z) — f(x)|| < e. We
claim that for this § > 0, Bs(x) C f~(G). To see it, choose z € Bs(x) to show f(z) € G. But such z satisfies
|z — x|| < d so that || f(z) — f(x)]| < e or in other words, f(z) € B.(f(x)) C G.

(9b.) Statement. Let Q@ C R™ be open and f : 0 — R™ be continuous. Then f() is open.

FALSE! Counterexample: the constant function f(x) = c is continuous but f(€2) = {c} is a singleton set
which is not open.

(9c.) Statement. Let f : R™ — R™ be continuous and E C R™. Suppose E is connected in R™. Then
f7Y(E) is connected in R™.

FALSE! Counterexample: f(x) = z? is continuous from R to R but f~1([1,4]) = [-2,-1] U [1,2].

(10.) Let K C R? be a compact set. Suppose {x,, }nen C K is a sequence in K which is a Cauchy sequence
in R2. Then there is a point k € K so that x,, — k as n — oo.

Since {x,} is Cauchy, it is convergent in R?: there is a k € R? so that x,, — k as n — oco. But as K is
compact it is closed. But a closed set contains its limit points, so k € K.

(11.) Theorem. Let L be a linear transformation L : R™ — R™ and let f(x) = Lx. Suppose that {x,} is a
sequence in R™ that converges x; — a as k — oo. Then f(x;) — f(a) as k — oo.

Proof. A linear transformation is given by matrix multiplication, thus there is a matrix A = {a;;} with
t=1,...,m, j = 1,...,n so that if z = (2(1),2(2),...,2(n)) then the i-th component of the value is
f(z)(i) = (Az)(i) = 2?21 a;;2(j). In other words, if a; denotes the i-th row of A, then the f(z)(i) = a;-z. This
means that | f(z)(i)| < |la;|| ||z|| by the Cauchy Schwarz inequality. Hence || f(z)|*> = 31", | f(z)(i)[* < M?||z||?
where M? = 3" ||a;||* is a constant depending on L only. To prove that f(x;) — f(a) as k — oo, we must
show that for every £ > 0, there is an N € N so that for every k > N, we have ||f(xx) — f(a)| < . Now,
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choose £ > 0. By the fact that x; converges, there is an N € N so that if K > N then |x; —al| <e(1+ M)~
For this N, if £ > N then by linearity,

Me
1+ M

1f(xk) = f(@)]| = [[Axk — Aa|| = [[A(xx —a)|| < M||x) —a]| < <e.

(12.) Theorem. Suppose that {x; }ren € R? is a bounded sequence of points. Then there it has a convergent
subsequence.

Proof. Using the boundedness, that there is M < oo so that ||xx|| < M for all k, we obtain that the
p-th coefficient sequence is bounded because |xx(p)| < ||xk|| < M for all k and p. As the sequence {xx(1)}
is bounded, by the Bolzano-WeierstraB Theorem in R!, there is a subsequence k; — oo as i — oo so that
xk, (1) — a(1l) converges to some real number as ¢ — co. As the sequence {xy,(2)} is also bounded, by BW
again, there is a subsubsequence k;; — oo as j — oo so that Xk, (2) — a(2) converges as j — oo. We can
repeat this one last time. As the sequence {Xk,,j (3)} is also bounded, by BW again, there is a subsubsubsequence
ki, — oo as { — oo so that Xk, (3) — a(3) converges as £ — oo. Since the a subsequence of a convergent
sequence is convergent, also Xk, (1) — a(1) and X, (2) — a(2) as £ — oco. Now, using the theorem that a
sequence in R3 converges if and only if all of the sequences of components converge, we get that Xp;;, = A in

R3 as £ — oo. (Usually, since subscripts of subscripts are frowned upon in typography, we denote subsequences
by k' = ki, k" = k;, and k"' = ki;, or something similar.)

(13.) Theorem. Let {xj}ren be a sequence in R™. x; — a as k — oo if and only if for every open set G 3 a
there is an NV € N so that for every k € N, if k£ > N then x; € G.

Proof. Assume that x; — a as k — oo, namely, for every € > 0 there is and N € N so that for every k > N
we have ||x; —al| < . Now, choose an open set G € R™ which contains a € G. As G is an open set, there is a
d > 0 so that the J-ball about a satisfies Bs(a) C G. Now using € = ¢ in the statement of convergence, there is
an N € N so that for every k > N, x;, is close to a so that ||x — al| < d. In other words, x;, € Bs(a) C G, as
claimed.

To show the other direction, assume that for every open G > a, there is NV € N so that for every £ > N,
xi € G. Choose € > 0. Let G = B.(a). As the ball is open, there is an N € N so that k > N implies x;, € G.
Thus k > N implies ||x; — a|| < €. Hence the definition of x;, — a as k — oo is satisfied.

(14.) Theorem. Let F' € R™ be a set. F is closed if and only if ' contains all limits of sequences from F. That
is, if {xx}ren is a sequence in F' which converges in R", i.e., x;; — a as k — oo to some a € R"™ then a € F.

Proof. First we argue that a closed set contains its limit points. Suppose we are given a sequence {xj}reN
in F which converges in R", i.e., x; — a as k — oo which means for every € > 0 there is and NV € N so that
for every kK > N we have ||x; — a|| < e. We are to show that a € F. Suppose that it is not the case. Then
a € F¢, which is an open set. By the definition of F'¢ being an open set, there is a § > 0 so that Bs(a) C F°.
This contradicts the assumption that the sequence from F' approaches a, for we have shown that there exists a
d > 0 so that for all N € N thereisa k > N, say k = N, so that ||x; — a|| > ¢ because x;, ¢ F°.

Next we argue that if a set F' contains its limit points, then it must be closed. F is closed if and only if its
complement F° is open. Argue by contrapositive. Suppose that F' is not closed so F¢ is not open. That is, it is
not the case that for every a € F° there exists an € > 0 so that B.(a) C F°. Equivalently, there is an a € F*°
so that for every ¢ > 0 there is x € B.(a) N F'. Taking ¢ = 1/k, there is an x; € By ,(a) N F, which is to say
||lxx — al| < 1/k. Thus we have found a sequece {x;} in F such that x;, — ain R ask — oo, buta ¢ F. In
other words, F' does not contain one of its limit points.

(15.) Theorem. Suppose S; C R™ are closed nonempty sets which are contained in the compact set K. Assume
that the subsets form a decreasing sequence S; 2 S O S3 O ---. Then they have a nonempty intersection
ﬂiEN S; 7é 0.

Proof. Suppose it is false. Then [),.nySi = 0. Let U; = R™\S; which are open since S; are closed. By
deMogran’s formula, U;U; = U; (R™\S;) = R"\ (N;5;) = R™"\0 = R™. Thus {U;} is an open cover of K. Since
K is compact, there are finitely many i1,42,... ,i, sothat K CU;, U---UU; = (R™\S;,)U---U(R"\S;, ) =
R\ (S;, N---NS;, ) = R"\S, where p = max{iy, ... ,4,} since the S;'s are nested. But this says KNS, =0

which contradicts the assumption that .S, is a nonempty subset of K.
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(16.) Theorem. E = [0,1] N Q, the set of rational points between zero and one, is not compact.

Proof. We find an open cover without finite subcover. Let ¢ = 1/4/2 or any other irrational number ¢ € [0, 1].
Consider the sets Uy = (¢,00) and U; = (—o00,¢ — 1/i) for i € N. Then C = {U,};=0,1,2,... is an open cover.
For if x € FE, since x is rational, x # ¢. If x > ¢ then x € Uy. If x < ¢, by the Archimidean property, there is
an i € N so that 1/i < ¢ — . It follows that ¢ — 1/i > = so « € U;. On the other hand no finite collection
will cover. Indeed, if we choose any finite cover it would have to include Uy to cover 1 € E and therefore take
the form {Up,U;,,... ,U;,} for a finite set of numbers i,... ,i; € N. Hence if K = max{i1,...,is} then
Uy UU;, U...UU;, =(—00,c—1/K)U (¢,00). But in the gap [c — 1/K, c| there are rational numbers, by the
density of rationals. Thus E € Uy UU;, U...UU,;,. (Of course the easy argument is to observe that E is not
closed so can't be compact.)

(17.) Theorem. Suppose E C R™ is bounded and f : E — R™ is uniformly continuous. Then f(F) is bounded.
This would not be true if “uniformly continuous” were replaced by “continuous.”

Proof. One idea is to divide E into finitely many little pieces so that f doesn’t vary very much on any one
of them. Then the bound on f is basically the max of bounds at one point for each little piece. f is uniformly
continuous if for every € > 0 there is a § > 0 so that if x,y € E such that ||x —y|| < ¢ then ||f(x) — f(¥)| <e.
Fix an €9 > 0 and let uniform continuity give §o > 0. Since E is bounded, there is an R < oo so that
E C Bg(0). Finitely many do/2 balls are required to cover Bgr(0), that is, there are points x; € R™ so that
Bgr(0) C U, Bs,/2(x;). This can be accomplished by chopping the ball into small enough cubes and taking
X;'s as the centers of the cubes. e.g., the cube [—d0/5\/n,d0/5v/n] x --- x [=d0/5v/n,d0/5v/n] € Bs,/2(0).
Choose points of E in those balls that meet E. Let T = {i € {1,...,J} : By, /o(x;) N E # (0} and choose
Yi € Bsya(xi)) NEif i € T. Let M = max{[|f(ys)|| : i € Z} be the largest norm among the points y;
in E. Then the claim is that f(E) C Ba1s,(0). To see this, choose z € E. Since E is in the union
of little balls, there is an index j € Z so that z € Bs,/2(x;). Since y; € Bs,/2(x;) also, it follows that
Iz —y;ll = llz —x; +x; —y;ll <llz—x%4] + x5 —y;ll < do/2+ d0/2 = . By the uniform continuity,
1£(y;) — F()]| < eo. It follows that [|£(z)]| = |.f(2) — F(v;) + F(y:)ll < I£(z) — F(y,) + IF(y5)| < 20 + M
and we are done.

The result doesn't hold if f is not uniformly continuous. Let E = B1(0)\{0} and f(x) = |x||7%. fis
continuous on F but f(E) = (1,00) is unbounded.

(18.) Theorem. Let S =1[0,1] x [0,1] CR? and F : S — R be continuous. Then F is not one to one.

Proof. (There are probably many other more imaginative ways to show this.) Consider the circle o(t) =
(3 + gsint,5 + scost) € S ast € [0,2n]. Then f(t) = F(o(t)) is a periodic continuous function. If f
is constant then F(0(0)) = F(o(w)) so F is not 1 — 1. If f is not constant, since [0,27] is compact, there
are points 0y, 61 € [0,2n] where f(6p) = inf{f(¢) : ¢ € [0,27]} and f(61) = sup{f(¢) : t € [0,27]}. Also
f(6o) < f(61). For convenience, suppose 6y < 61. The point is that the curves o((o, 61)) and o((01, 6y + 27))
are two opposite arcs of the circle running from the minimum of f on the circle to the maximum. And any
intermediate value gets taken on at least once in each arc, thus there are two point where f is equal and F is
therefore not 1 — 1. More precisely, choose any number f(6y) < y < f(61). By the intermediate value theorem
applied to f : [6p,01] — R, there is 05 € (0, 61) so that f(f3) = y. Also by the intermediate value theorem
applied to f : [01,0p + 27| — R, there is 04 € (61,00 + 27) so that f(64) = y. Since o(03) # o(64) because
0=0601,—01 <6y —05 <0y+2m— 0y = 2m, it follows that F'is not 1 — 1 since F(c(03)) = F(0(04)). The case
Oy > 0 is similar.



