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Sample Problems for the Second Midterm Exam Name: Problems With Solutions

September 28. 2007

Questions 1–10 appeared in my Fall 2000 and Fall 2001 Math 3220 exams.

(1) Let E be a subset of Rn.
a. Define: E is open.
b. Let a ∈ Rn and r > 0. Show that E = {x ∈ Rn : ‖x− a‖ > r} is open.

(2) Let E ∈ Rn.
a. Define the closure, E.
b. Show that if x ∈ E then for every ε > 0, Bε(x) ∩ E 6= ∅. (Bε(x) is an open ε-ball about x.)

(3) Suppose E ⊆ F ⊆ Rn. Then the interiors satisfy E◦ ⊆ F ◦ and that the boundary is contained in the
closure ∂E ⊆ F .

(4) Let E = [0, 1] ∩ Q, the set of rational points between zero and one. Determine whether the set E is
open, closed, or neither. Prove your answer.

(5) Using just the definition of “open set” in Rn, show that E = {(x, y) ∈ R2 : x > 0}. is an open set.
(6) Prove if true, give a counterexample if false:

a. Let E ⊆ Rn and G ⊆ E be relatively open. Then for any point x ∈ G there is a δ > 0 so that the
open δ-ball about x, Bδ(x) ∩ E ⊆ G.

b. Let E ∈ Rn be a set which is not open, and suppose {xn} is a sequence in E which converges
lim

n→∞
xn = x in Rn. Then x ∈ E.

(7) Prove if true, give a counterexample if false:
a. Let E ∈ Rn. If the boundary ∂E is connected then E is connected.
b. Let E ⊆ Rn. A point is not in the closure x /∈ E if and only if there is an open set O ⊆ Rn such

that x ∈ O but O ∩ E = ∅.
c. Let E ⊆ Rn. Then the interior points E◦ are relatively open in E.

(8) Let E = {(x, y) ∈ R2 : x2 + y2 ≤ 2}. Using only the definition of connectedness, the fact that intervals
are the only connected sets connected in R1, and properties of continuous functions, show that E is a
connected subset of R2.

(9) Prove if true, give a counterexample if false:
a. Let f : Rn → Rm be continuous and G ⊆ Rm be open. Then for any point x ∈ f−1(G) there is

a δ > 0 so that the open δ-ball about x, Bδ(x) ⊆ f−1(G).
b. Let Ω ⊆ Rn be open and f : Ω → Rm be continuous. Then f(Ω) is open.
c. Let f : Rn → Rm be continuous and E ⊆ Rm. Suppose E is connected in Rm. Then f−1(E) is

connected in Rn.
(10) Let K ⊆ R2 be a compact set. Suppose {xn}n∈N ⊆ K is a sequence in K which is a Cauchy sequence

in R2. Then there is a point k ∈ K so that xn → k as n →∞.

(11) Let L be a linear transformation L : Rn → Rm and let f(x) = Lx. Suppose that {xk} is a sequence in
Rn that converges xk → a as k →∞. Show that f(xk) → f(a) as k →∞.

(12) Suppose that {xk}k∈N ⊆ R3 is a bounded sequence of points. Show that there is a convergent subse-
quence. (You may assume the Bolzano-Weierstraß Theorem for R1 but not for Rn.)

(13) Let {xk}k∈N be a sequence in Rn. Prove that xk → a as k →∞ if and only if for every open set G 3 a
there is an N ∈ N so that for every k ∈ N, if k ≥ N then xk ∈ G.

(14) Let F ∈ Rn be a set. Show that F is closed if and only if F contains all limits of sequences in F , that
is, if {xk}k∈N is a sequence in F which converges in Rn, i.e., xk → a as k →∞ to some a ∈ Rn then
a ∈ F .

(15) Suppose Si ⊆ Rn are closed nonempty sets which are contained in the compact set K. Assume that
the subsets form a decreasing sequence S1 ⊇ S2 ⊇ S3 ⊇ · · · . Then they have a nonempty intersection⋂

i∈N Si 6= ∅.
(16) E = [0, 1] ∩Q, the set of rational points between zero and one, is not compact.
(17) Theorem. Suppose E ⊆ Rn is bounded and f : E → Rm is uniformly continuous. Then f(E) is

bounded. This would not be true if “uniformly continuous” were replaced by “continuous.”
(18) Theorem. Let S = [0, 1]× [0, 1] ⊆ R2 and F : S → R be continuous. Then F is not one to one.
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Solutions.
(1.) Let E be a subset of Rn. Definition : E is open if for every point x ∈ E there is an ε > 0 so that the
open ε-ball about x is in E, namely Bε(x) ⊆ E.

Theorem. Let a ∈ Rn and r > 0, then E = {x ∈ Rn : ‖x− a‖ > r} is open.
Proof. Choose y ∈ E. Then ‖y − a‖ > r. Let ε = ‖y − a‖ − r > 0. Then I claim that Bε(y) ⊆ E so

E is open. To see the claim, choose z ∈ Bε(y). Then ‖z − y‖ < ε. By the triangle inequality ‖z − a‖ =
‖z− y + y − a‖ ≥ ‖y − a‖ − ‖z− y‖ > ‖y − a‖ − ε = ‖y − a‖ − (‖y − a‖ − r) = r, hence, z ∈ E.

(2.) Let E ⊆ Rn. Definition : The closure E = ∩{F : F ⊆ Rn is closed and E ⊆ F}.
Theorem. If x ∈ E then for every ε > 0 we have Bε(x) ∩ E 6= ∅.
Proof. Suppose it is false for some x. Then there is an ε0 > 0 and a ball Bε0(x) so that Bε0(x) ∩ E = ∅.

It follows that E ⊆ F = Rn\Bε0(x) which is a closed set since it is the complement of the open ball, thus it
is one of the F ’s in the intersection definition of closure. Hence, E ⊆ F = Rn\Bε0(x). It follows that that
E ∩Bε0(x) = ∅ thus x /∈ E.

(3.) Theorem. Suppose E ⊆ F ⊆ Rn. Then the interiors satisfy E◦ ⊆ F ◦ and that the boundary is contained
in the closure ∂E ⊆ F .

Proof. Recall that the interior is E◦ = ∪{G : G ⊆ Rn is open and G ⊆ E}. Thus if x ∈ E◦ there is an
open set G ⊆ Rn such that x ∈ G ⊆ E. But E ⊆ F so G ⊆ F is an open set, which is included in the union
F ◦ = ∪{G : G ⊆ Rn is open and G ⊆ F}. Thus x ∈ G ⊆ F ◦.

The closure is defined to be F = ∩{C : C ⊆ Rn is closed and F ⊆ C}. The boundary is defined to be
∂E = E\E◦ which is contained in E. Also E = ∩{H : H ⊆ Rn is closed and E ⊆ H}. If C ⊆ Rn is any closed
set such that F ⊆ C then E ⊆ F ⊆ C so all C’s occur as one of the H’s in the intersection definition of E. It
follows that E ⊆ F whence ∂E ⊆ E ⊆ F .

(4.) Theorem. Let E = [0, 1] ∩Q, the set of rational points between zero and one. The set E is neither open
nor closed.

Proof. To show that E is not open, we show that it is not the case that for every x ∈ E, there exists a δ > 0
so that the ball Bδ(x) ⊆ E. This negation becomes: there is an x ∈ E so that for every δ > 0, Bδ(x) is not
contained in E, in other words Bδ(x) ∩ Ec 6= ∅. Take the point x = 1 in E. For every δ > 0 there is a number
y ∈ (1, 1 + δ) ⊆ Bδ(1). As y > 1, so y /∈ E. Thus for every δ > 0 we have produced y ∈ Bδ(1) ∩ Ec. So E is
not open.

A set E ∈ Rn is closed if and only if its complement Ec ⊆ Rn is open. To show that E is not closed, we
show that Ec is not open. Choose z ∈ Ec, say z =

√
2− 1 ≈ .414214 . . . . By the density of rationals, for every

δ > 0 there is a rational number in the interval q ∈ Bδ(z) ∩ (0, 1). This number q ∈ E, thus, for every δ > 0
there is q ∈ Bδ(z) ∩ (Ec)c. Thus Ec is not open.

(5.) Theorem. Let E = {(x, y) ∈ R2 : x > 0}. Then E is an open set.
E is open if for every (x, y) ∈ E there is ε > 0 so that Bε(x, y) ⊆ E. Choose (x, y) ∈ E. Thus x > 0. Let

ε = x. To show Bε(x, y) ⊆ E, choose (u, v) ∈ Bε(x, y), thus ‖(x, y) − (u, v)‖ < ε. Now u = x − (x − u) ≥
x− ‖(x, y)− (u, v)‖ > x− ε = x− x = 0 hence (u, v) ∈ E thus Bε(x, y) ⊆ E.

(6a.) Statement : Let E ⊆ Rn and G ⊆ E be relatively open. Then for any point x ∈ G there is a δ > 0 so
that the open δ-ball about x, Bδ(x) ∩ E ⊆ G. TRUE!

Proof. G ⊆ E relatively open means that there is an open set O ⊆ Rn so that G = O∩E. But if x ∈ G ⊆ O
then there is δ > 0 so that Bδ(x) ⊆ O and so Bδ(x) ∩ E ⊆ O ∩E = G.

(6b.) Statement : Let E ∈ Rn be a set which is not open, and suppose {xn} is a sequence in E which converges
lim

n→∞
xn = x in Rn. Then x ∈ E. FALSE!

Let E = (0, 1] ⊆ R. E is not open since (1− ε, 1 + ε) 6⊆ E all ε > 0. But xn = 1/n ∈ E for n ∈ N, xn → 0
in R as n →∞ but 0 /∈ E.

(7a.) Statement. Let E ∈ Rn. If the boundary ∂E is connected then E is connected. FALSE!
Let E = {x ∈ R : x 6= 0}. Then ∂E = {0} which is connected (since it is an interval) but E = E1 ∪ E2

where E1 = {x : x > 0} and E2 = {x : x < 0} which are both open, disjoint and nonempty intervals, therefore
separate E into two connected components.
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(7b.) Statement. Let E ⊆ Rn. A point is not in the closure x /∈ E if and only if there is an open set O ⊆ Rn

such that x ∈ O but O ∩ E = ∅. TRUE!

The closure is E =
⋂
{F : F ⊆ Rn is closed and E ⊆ F .}. If x is not in this set then there is a closed set

F ⊆ Rn such that E ⊆ F and x /∈ F . Then the complement is open with x ∈ O = Rn\F and O ∩ E = ∅ so
O is the desired open set. On the other hand, if there is open O 3 x such that E ∩ O = ∅ then F = Rn\O
is closed and E ⊆ F . Because E is defined as the intersection of such F ’s, it follows that E ⊆ F . But x /∈ F
implies x /∈ E.

(7c.) Statement. Let E ⊆ Rn. Then the interior points E◦ are relatively open in E. TRUE!

The interior is defined to be E◦ =
⋃
{G : G ∈ Rn is open and G ⊆ E}, thus is the union of open sets so is

open in Rn. Also, E◦ ⊆ E follows. Now E◦ is relatively open in E if there is an open set O ⊆ Rn so that
E◦ = E ∩ O. But this follows by setting O = E◦ which is an open set in Rn and because E◦ ⊆ E. Hence
E ∩ O = E ∩ E◦ = E◦.

(8.) Let E = {(x, y) ∈ R2 : x2 + y2 ≤ 2}. Using only the definition of connectedness, the fact that intervals
are the only connected sets connected in R1, and properties of continuous functions, show that E is a connected
subset of R2.

The set E is path connected. For example if x, y ∈ E then f : [0, 1] → E given by f(t) = (1− t)x + ty is a
continuous path in E. In fact, for 0 ≤ t ≤ 1 and using the Schwarz Inequality, ‖f(t)‖2 = (1− t)2‖x‖2 + 2t(1−
t)x · y + t2‖y‖2 ≤ (1 − t)2‖x‖2 + 2t(1 − t)‖x‖‖y‖ + t2‖y‖2 = ((1− t)‖x‖+ t‖y‖)2 < (2(1− t) + 2t)2 = 4 so
f(t) ∈ E. The components of f are polynomial so f is continuous.

Since E is path connected, it is connected. If not there are relatively open sets A1, A2 in E so that A1 6= ∅,
A2 6= ∅, A1 ∩A2 = ∅ and E = A1 ∪A2. Choose x ∈ A1 and y ∈ A2 and a path σ : [0, 1] → E so that σ(0) = x
and σ(1) = y. σ−1(A1) and σ−1(A2) are relatively open in [0, 1], are disjoint because A1 ∩ A2 = ∅ implies
σ−1(A1) ∩ σ−1(A2) = σ−1(A1 ∩ A2) = ∅, are nonempty because there are x ∈ σ−1(A1) and y ∈ σ−1(A2) and
[0, 1] ⊆ σ−1(A1)∪ σ−1(A2) = σ−1(A1 ∪A2) = σ−1(E). Thus σ−1(A1) and σ−1(A2) disconnect [0, 1], which is
a contradiction because [0, 1] is connected.

(9.) For each part, determine whether the statement is TRUE or FALSE.

(9a.) Statement. Let f : Rn → Rm be continuous and G ⊆ Rm be open. Then for any point x ∈ f−1(G)
there is a δ > 0 so that the open δ-ball about x, Bδ(x) ⊆ f−1(G).

TRUE! Since G is open, there is ε > 0 so that Bε(f(x)) ⊆ G. But, since f is continuous, for all positive
numbers, such as this ε > 0, there is a δ > 0 so that for all z ∈ Rn, if ‖z− x‖ < δ then ‖f(z)− f(x)‖ < ε. We
claim that for this δ > 0, Bδ(x) ⊆ f−1(G). To see it, choose z ∈ Bδ(x) to show f(z) ∈ G. But such z satisfies
‖z− x‖ < δ so that ‖f(z)− f(x)‖ < ε or in other words, f(z) ∈ Bε(f(x)) ⊆ G.

(9b.) Statement. Let Ω ⊆ Rn be open and f : Ω → Rm be continuous. Then f(Ω) is open.

FALSE! Counterexample: the constant function f(x) = c is continuous but f(Ω) = {c} is a singleton set
which is not open.

(9c.) Statement. Let f : Rn → Rm be continuous and E ⊆ Rm. Suppose E is connected in Rm. Then
f−1(E) is connected in Rn.

FALSE! Counterexample: f(x) = x2 is continuous from R to R but f−1([1, 4]) = [−2,−1] ∪ [1, 2].

(10.) Let K ⊆ R2 be a compact set. Suppose {xn}n∈N ⊆ K is a sequence in K which is a Cauchy sequence
in R2. Then there is a point k ∈ K so that xn → k as n →∞.

Since {xn} is Cauchy, it is convergent in R2: there is a k ∈ R2 so that xn → k as n → ∞. But as K is
compact it is closed. But a closed set contains its limit points, so k ∈ K.

(11.) Theorem. Let L be a linear transformation L : Rn → Rm and let f(x) = Lx. Suppose that {xk} is a
sequence in Rn that converges xk → a as k →∞. Then f(xk) → f(a) as k →∞.

Proof. A linear transformation is given by matrix multiplication, thus there is a matrix A = {aij} with
i = 1, . . . , m, j = 1, . . . , n so that if z = (z(1), z(2), . . . , z(n)) then the i-th component of the value is
f(z)(i) = (Az)(i) =

∑n
j=1 aijz(j). In other words, if ai denotes the i-th row of A, then the f(z)(i) = ai ·z. This

means that |f(z)(i)| ≤ ‖ai‖ ‖z‖ by the Cauchy Schwarz inequality. Hence ‖f(z)‖2 =
∑m

i=1 |f(z)(i)|2 ≤ M2 ‖z‖2

where M2 =
∑m

i=1 ‖ai‖2 is a constant depending on L only. To prove that f(xk) → f(a) as k → ∞, we must
show that for every ε > 0, there is an N ∈ N so that for every k ≥ N , we have ‖f(xk) − f(a)‖ < ε. Now,
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choose ε > 0. By the fact that xk converges, there is an N ∈ N so that if k ≥ N then ‖xk − a‖ < ε(1 + M)−1.
For this N , if k ≥ N then by linearity,

‖f(xk)− f(a)‖ = ‖Axk −Aa‖ = ‖A(xk − a)‖ ≤ M‖xk − a‖ ≤ Mε

1 + M
< ε.

(12.) Theorem. Suppose that {xk}k∈N ⊆ R3 is a bounded sequence of points. Then there it has a convergent
subsequence.

Proof. Using the boundedness, that there is M < ∞ so that ‖xk‖ ≤ M for all k, we obtain that the
p-th coefficient sequence is bounded because |xk(p)| ≤ ‖xk‖ ≤ M for all k and p. As the sequence {xk(1)}
is bounded, by the Bolzano-Weierstraß Theorem in R1, there is a subsequence ki → ∞ as i → ∞ so that
xki(1) → a(1) converges to some real number as i → ∞. As the sequence {xki(2)} is also bounded, by BW
again, there is a subsubsequence kij

→ ∞ as j → ∞ so that xkij
(2) → a(2) converges as j → ∞. We can

repeat this one last time. As the sequence {xkij
(3)} is also bounded, by BW again, there is a subsubsubsequence

kij`
→ ∞ as ` → ∞ so that xkij`

(3) → a(3) converges as ` → ∞. Since the a subsequence of a convergent

sequence is convergent, also xkij`
(1) → a(1) and xkij`

(2) → a(2) as ` → ∞. Now, using the theorem that a

sequence in R3 converges if and only if all of the sequences of components converge, we get that xkij`
→ a in

R3 as ` →∞. (Usually, since subscripts of subscripts are frowned upon in typography, we denote subsequences
by k′ = ki, k′′ = kij

and k′′′ = kij`
or something similar.)

(13.) Theorem. Let {xk}k∈N be a sequence in Rn. xk → a as k →∞ if and only if for every open set G 3 a
there is an N ∈ N so that for every k ∈ N, if k ≥ N then xk ∈ G.

Proof. Assume that xk → a as k →∞, namely, for every ε > 0 there is and N ∈ N so that for every k ≥ N
we have ‖xk − a‖ < ε. Now, choose an open set G ∈ Rn which contains a ∈ G. As G is an open set, there is a
δ > 0 so that the δ-ball about a satisfies Bδ(a) ⊆ G. Now using ε = δ in the statement of convergence, there is
an N ∈ N so that for every k ≥ N , xk is close to a so that ‖xk − a‖ < δ. In other words, xk ∈ Bδ(a) ⊆ G, as
claimed.

To show the other direction, assume that for every open G 3 a, there is N ∈ N so that for every k ≥ N ,
xk ∈ G. Choose ε > 0. Let G = Bε(a). As the ball is open, there is an N ∈ N so that k ≥ N implies xk ∈ G.
Thus k ≥ N implies ‖xk − a‖ < ε. Hence the definition of xk → a as k →∞ is satisfied.

(14.) Theorem. Let F ∈ Rn be a set. F is closed if and only if F contains all limits of sequences from F . That
is, if {xk}k∈N is a sequence in F which converges in Rn, i.e., xk → a as k →∞ to some a ∈ Rn then a ∈ F .

Proof. First we argue that a closed set contains its limit points. Suppose we are given a sequence {xk}k∈N

in F which converges in Rn, i.e., xk → a as k → ∞ which means for every ε > 0 there is and N ∈ N so that
for every k ≥ N we have ‖xk − a‖ < ε. We are to show that a ∈ F . Suppose that it is not the case. Then
a ∈ F c, which is an open set. By the definition of F c being an open set, there is a δ > 0 so that Bδ(a) ⊆ F c.
This contradicts the assumption that the sequence from F approaches a, for we have shown that there exists a
δ > 0 so that for all N ∈ N there is a k ≥ N , say k = N , so that ‖xk − a‖ ≥ δ because xk /∈ F c.

Next we argue that if a set F contains its limit points, then it must be closed. F is closed if and only if its
complement F c is open. Argue by contrapositive. Suppose that F is not closed so F c is not open. That is, it is
not the case that for every a ∈ F c there exists an ε > 0 so that Bε(a) ⊆ F c. Equivalently, there is an a ∈ F c

so that for every ε > 0 there is x ∈ Bε(a) ∩ F . Taking ε = 1/k, there is an xk ∈ B1/k(a) ∩ F , which is to say
‖xk − a‖ < 1/k. Thus we have found a sequece {xk} in F such that xk → a in Rn as k →∞, but a /∈ F . In
other words, F does not contain one of its limit points.

(15.) Theorem. Suppose Si ⊆ Rn are closed nonempty sets which are contained in the compact set K. Assume
that the subsets form a decreasing sequence S1 ⊇ S2 ⊇ S3 ⊇ · · · . Then they have a nonempty intersection⋂

i∈N Si 6= ∅.
Proof. Suppose it is false. Then

⋂
i∈N Si = ∅. Let Ui = Rn\Si which are open since Si are closed. By

deMogran’s formula, ∪iUi = ∪i (Rn\Si) = Rn\ (∩iSi) = Rn\∅ = Rn. Thus {Ui} is an open cover of K. Since
K is compact, there are finitely many i1, i2, . . . , in so that K ⊆ Ui1 ∪ · · · ∪Uin

= (Rn\Si1)∪ · · · ∪ (Rn\Sin
) =

Rn\ (Si1 ∩ · · · ∩ Sin
) = Rn\Sp where p = max{i1, . . . , in} since the Si’s are nested. But this says K ∩ Sp = ∅

which contradicts the assumption that Sp is a nonempty subset of K.
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(16.) Theorem. E = [0, 1] ∩Q, the set of rational points between zero and one, is not compact.
Proof. We find an open cover without finite subcover. Let c = 1/

√
2 or any other irrational number c ∈ [0, 1].

Consider the sets U0 = (c,∞) and Ui = (−∞, c − 1/i) for i ∈ N. Then C = {Ui}i=0,1,2,... is an open cover.
For if x ∈ E, since x is rational, x 6= c. If x > c then x ∈ U0. If x < c, by the Archimidean property, there is
an i ∈ N so that 1/i < c − x. It follows that c − 1/i > x so x ∈ Ui. On the other hand no finite collection
will cover. Indeed, if we choose any finite cover it would have to include U0 to cover 1 ∈ E and therefore take
the form {U0, Ui1 , . . . , UiJ

} for a finite set of numbers i1, . . . , iJ ∈ N. Hence if K = max{i1, . . . , iJ} then
U0 ∪ Ui1 ∪ . . . ∪ UiJ

= (−∞, c− 1/K) ∪ (c,∞). But in the gap [c− 1/K, c] there are rational numbers, by the
density of rationals. Thus E 6⊆ U0 ∪ Ui1 ∪ . . . ∪ UiJ

. (Of course the easy argument is to observe that E is not
closed so can’t be compact.)

(17.) Theorem. Suppose E ⊆ Rn is bounded and f : E → Rm is uniformly continuous. Then f(E) is bounded.
This would not be true if “uniformly continuous” were replaced by “continuous.”

Proof. One idea is to divide E into finitely many little pieces so that f doesn’t vary very much on any one
of them. Then the bound on f is basically the max of bounds at one point for each little piece. f is uniformly
continuous if for every ε > 0 there is a δ > 0 so that if x,y ∈ E such that ‖x−y‖ < δ then ‖f(x)− f(y)‖ < ε.
Fix an ε0 > 0 and let uniform continuity give δ0 > 0. Since E is bounded, there is an R < ∞ so that
E ⊆ BR(0). Finitely many δ0/2 balls are required to cover BR(0), that is, there are points xi ∈ Rn so that
BR(0) ⊆ ∪J

i=1Bδ0/2(xi). This can be accomplished by chopping the ball into small enough cubes and taking
xi’s as the centers of the cubes. e.g., the cube [−δ0/5

√
n, δ0/5

√
n] × · · · × [−δ0/5

√
n, δ0/5

√
n] ⊆ Bδ0/2(0).

Choose points of E in those balls that meet E. Let I = {i ∈ {1, . . . , J} : Bδ0/2(xi) ∩ E 6= ∅} and choose
yi ∈ Bδ0/2(xi) ∩ E if i ∈ I. Let M = max{‖f(yi)‖ : i ∈ I} be the largest norm among the points yi

in E. Then the claim is that f(E) ⊆ BM+ε0(0). To see this, choose z ∈ E. Since E is in the union
of little balls, there is an index j ∈ I so that z ∈ Bδ0/2(xj). Since yj ∈ Bδ0/2(xj) also, it follows that
‖z − yj‖ = ‖z − xj + xj − yj‖ ≤ ‖z − xj‖ + ‖xj − yj‖ < δ0/2 + δ0/2 = δ0. By the uniform continuity,
‖f(yj)− f(z)‖ < ε0. It follows that ‖f(z)‖ = ‖f(z)− f(yj) + f(yj)‖ ≤ ‖f(z)− f(yj)‖+ ‖f(yj)‖ < ε0 + M
and we are done.

The result doesn’t hold if f is not uniformly continuous. Let E = B1(0)\{0} and f(x) = ‖x‖−1. f is
continuous on E but f(E) = (1,∞) is unbounded.

(18.) Theorem. Let S = [0, 1]× [0, 1] ⊆ R2 and F : S → R be continuous. Then F is not one to one.
Proof. (There are probably many other more imaginative ways to show this.) Consider the circle σ(t) =

( 1
2 + 1

2 sin t, 1
2 + 1

2 cos t) ∈ S as t ∈ [0, 2π]. Then f(t) = F (σ(t)) is a periodic continuous function. If f
is constant then F (σ(0)) = F (σ(π)) so F is not 1 − 1. If f is not constant, since [0, 2π] is compact, there
are points θ0, θ1 ∈ [0, 2π] where f(θ0) = inf{f(t) : t ∈ [0, 2π]} and f(θ1) = sup{f(t) : t ∈ [0, 2π]}. Also
f(θ0) < f(θ1). For convenience, suppose θ0 < θ1. The point is that the curves σ((θ0, θ1)) and σ((θ1, θ0 + 2π))
are two opposite arcs of the circle running from the minimum of f on the circle to the maximum. And any
intermediate value gets taken on at least once in each arc, thus there are two point where f is equal and F is
therefore not 1− 1. More precisely, choose any number f(θ0) < y < f(θ1). By the intermediate value theorem
applied to f : [θ0, θ1] → R, there is θ3 ∈ (θ0, θ1) so that f(θ3) = y. Also by the intermediate value theorem
applied to f : [θ1, θ0 + 2π] → R, there is θ4 ∈ (θ1, θ0 + 2π) so that f(θ4) = y. Since σ(θ3) 6= σ(θ4) because
0 = θ1 − θ1 < θ4 − θ3 < θ0 + 2π− θ0 = 2π, it follows that F is not 1− 1 since F (σ(θ3)) = F (σ(θ4)). The case
θ0 > θ1 is similar.


