
Math 3220 § 2.
Treibergs

First Midterm Exam Name: Solutions
January 30, 2013

1. Let {xn} be a sequence in Rd.

(a) State the definition: {xn} is a convergent sequence.
For some x ∈ Rd, we say that x = lim

n→∞
xn if for every ε > 0 there is an N ∈ R

such that ‖xn − x‖ < ε whenever n > N .
(b) Suppose that x ∈ Rd is a point such that r = ‖x‖ > 0 and lim

n→∞
xn = x. Then there

is a K ∈ R such that ‖xn‖ >
r

2
whenever n > K.

Choose ε =
r

2
. By the definition of convergence, there is K ∈ R so that ‖xn−x‖ <

ε whenever n > K. But for such n, by the reverse triangle inequality

‖xn‖ = ‖x− (x− xn)‖ ≥
∣∣‖x‖ − ‖x− xn)‖

∣∣ ≥ ‖x‖ − ‖x− xn)‖ > r − ε =
r

2
.

2. (a) Define: E is an open set of Rd.
E ⊂ Rd is open if for every x ∈ E there is ε > 0 such that the whole open ball

Bε(x) ⊂ E.

(b) Let U, V ⊂ R be open sets. Show that the product U × V is an open set in the
Euclidean plane, where U × V =

{
(x, y) ∈ R2 : x ∈ U and y ∈ V

}
.

To show that U ×V is open, we have to show that for every (u, v) ∈ U ×V there
is an ε > 0 such that the open ball Bε

(
(u, v)

)
⊂ U × V . Choose (u, v) ∈ U × V . Since

u ∈ U an open set, there is ε1 > 0 such that (u − ε1, u + ε1) ⊂ U . Also, since v ∈ V
an open set, there is ε2 > 0 such that (u − ε2, u + ε2) ⊂ V . Let ε = min{ε1, ε2} > 0.
Then Bε

(
(u, v)

)
⊂ U × V . To see it, choose (p, q) ∈ Bε

(
(u, v)

)
. We have

|p− u| ≤
√

(p− u)2 + (q − v)2 = ‖(p, q)− (u, v)‖ < ε ≤ ε1;

|q − v| ≤
√

(p− u)2 + (q − v)2 = ‖(p, q)− (u, v)‖ < ε ≤ ε2.

It follows that (p, q) ∈ (u− ε1, u + ε1)× (u− ε2, u + ε2) ⊂ U × V .
Hence Bε

(
(u, v)

)
⊂ U × V .

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: Suppose E ⊂ Rd and E does not contain all of its limit points. Then E
is open.
FALSE. For example, let E = (0, 1] ⊂ R. E is not open but it does not contain its
limit points: {e−n} ⊂ E but limn→∞ e−n = 0 /∈ E.

(b) Statement: Let A, B ⊂ Rd. Then their closures satisfy A ∩B = A ∩B.
FALSE. For example, let A = (−∞, 0) ⊂ R and B = (0,∞) ⊂ R. Then A ∩ B = ∅ so
A ∩B = ∅ but A = (−∞, 0] and B = [0,∞) so A ∩B = {0}.

(c) Statement: The function ||| (u, v) ||| =
(√
|u|+

√
|v|
)2

provides another norm for

R2.
FALSE. The triangle inequality fails. For example, let u = (1, 4) and v = (4, 1).
Then ||| (1, 4) ||| = ||| (4, 1) ||| = (

√
1 +
√

4)2 = 9. However |||u + v ||| = ||| (5, 5) ||| =
(
√

5 +
√

5)2 = 20 is not less than or equal to |||u |||+ |||v ||| = 9 + 9 = 18.

1



4. Let E ⊂ Rd be a bounded infinite set in Euclidean space. Then there is a point z ∈ Rd such
that every open neighborhood of z contains infinitely many points of E. [Note: E may be
uncountable so that it may not be given as points of a sequence.]

We shall find a candidate z ∈ Rd using bisection. Then argue that z has the desired
property.

Because E is bounded, for s sufficiently large, E is contained in the cube Q1 = [−s, s]d.
For j = 1, . . . , 2d, let Qj

1 denote the different closed sub-cubes obtained by cutting Q1 by the
middle coordinate hyperplanes. At least one of Qj

1∩E is infinite. If not, E = ∪2d

i=1Q
j
1∩E, a

finite union of finite sets. Let Q2 be one of the Qj
1’s such that Qj

1∩E is infinite. Proceeding
in this way, at each step we subdivide the cube Qk in turn into 2d sub-cubes and let Qk+1

be one of these sub-cubes that meets E in infinitely many points.

The cubes are a nested sequence of nonempty closed and bounded sets

Q1,⊃ Q2 ⊃ Q3 ⊃ Q4 ⊃ · · ·

By the nested intervals theorem in Rd, there is a point z ∈ ∩∞i=1Qi.

We end the proof by showing that z is the desired point. Let U be an open neighbor-
hood of z. Hence U is an open set. Thus there is an ε > 0 such that the ball Bε(z) ⊂ U .
Since the distance between any pair of points in Qn is at most 22−ns

√
d, for n large enough

we have Qn ∩E ⊂ Bε(z) ⊂ U . But by construction, Qn ∩E contains infinitely many points
of E.

5. Let K ⊂ Rd.

(a) State the definition: K is a compact set.
K ⊂ Rd is compact if every open cover of K has a finite subcover.

(b) Let E =
{(

1
n

, 0
)
∈ R2 : n ∈ N

}
. Find an open cover of E that does not have a finite

subcover. (You do not need to prove that your cover has this property.)

Let Un =
{

(x, y) ∈ R2 : x >
1

n + 1
and y ∈ R.

}
. The desired cover is {Un}n∈N.

To see that it is a cover, for any n ∈ N,
(

1
n

, 0
)
∈ Un so E ⊂ ∪∞i=1Ui. However,

this cover does not have a finite subcover. For any finite subset {i1, . . . , ip} ⊂ N, the

corresponding sets ∪p
j=1Uij

fail to cover because they don’t include the points
(

1
N

, 0
)

when N > max{i1, . . . , ip}.
(c) Let F = E ∪

{
(0, 0)

}
. Show that every open cover of F has a finite subcover.

Let {Ga}a∈A be an open cover so all Ga are open and F ⊂ ∪a∈AGa. Thus
one of the sets of this cover, say for a0 ∈ A, contains (0, 0) ∈ Ga0 . As Ga0 is open,

there is a ε > 0 such that Bε

(
(0, 0)

)
⊂ Ga0 . There is K ∈ N such that

1
K
≤ ε. It

follows that all points
(

1
n

, 0
)
∈ Bε

(
(0, 0)

)
⊂ Ga0 whenever n > K. For the remaining

uncovered points k = 1, 2, . . . ,K, we choose sets, corresponding to ak ∈ A such that(
1
k

, 0
)
∈ Gak

. It follows that finite subcollection

{Ga0 , Ga1 , . . . , GaK
}

is a cover of F : F ⊂ Ga0 ∪Ga1 ∪ · · · ∪GaK
.
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