

(1.) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function and $(a, b) \in \mathbb{R}^2$ a point. State the definition: f is a continuous at (a, b) . Determine whether f is continuous at $(0, 0)$ and prove your answer, where

$$
f(x,y) = \begin{cases} \frac{(x-y)^3}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}
$$

Definition. $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous at $(a, b) \in \mathbb{R}^2$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$
||f(x,y) - f(a,b)|| < \varepsilon \quad \text{whenever } (x,y) \in \mathbb{R}^2 \text{ and } ||(x,y) - (a,b)|| < \delta.
$$

We observe that the function is cubic over quadratic, so it should tend to zero at the origin. Indeed, since

$$
|x - y| \le |x| + |y| \le 2\sqrt{x^2 + y^2} = 2||x, y||
$$

we have for $(x, y) \neq (0, 0)$,

$$
|f(x,y) - f(0,0)| = \left| \frac{(x-y)^3}{x^2 + y^2} \right| \le \frac{8||(x,y)||^3}{||(x,y)||^2} \le 8||(x,y)||.
$$

Thus, if we choose $\varepsilon > 0$ and take $\delta = \varepsilon/8$, then for any $(x, y) \in \mathbb{R}^2$ such that $\|(x, y) - (0, 0)\| < \delta$ we have either $(x, y) = (0, 0)$ in which case $|f(x, y) - f(0, 0)| = 0 < \epsilon$ or $(x, y) \neq (0, 0)$ in which case

$$
|f(x,y) - f(0,0)| \le 8 ||(x,y)|| = 8 ||(x,y) - (0,0)|| < 8\delta = \varepsilon.
$$

Hence, f is continuous at $(0, 0)$.

(2.) Let $f : \mathbb{R}^p \to \mathbb{R}$ be continuous and $a < b$. Using just the definitions of continuity and $openness, show that E is open, where$

$$
E = \{x \in \mathbb{R}^p : a < f(x) < b\}.
$$

To show E is open we must show that for every $x \in E$ there is a $\delta > 0$ such that the whole open ball $B_\delta(x) \subset E$. Choose $x \in E$. Thus $a < f(x) < b$. Since the interval is open, there is an $\varepsilon > 0$ such that $(f(x) - \varepsilon, f(x) + \varepsilon) \subset (a, b)$. By continuity, there is a $\delta > 0$ such that $|f(z) - f(x)| < \varepsilon$ whenever $z \in \mathbb{R}^p$ and $||z - x|| < \delta$. But this implies that if $z \in B_\delta(x)$, then

$$
f(z) \in (f(x) - \varepsilon, f(x) + \varepsilon) \subset (a, b).
$$

In other words, $B_\delta(x) \subset E$. Hence, E is open.

 \Box

 \Box

(3.) Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

1. Statement Suppose $K \subset \mathbb{R}^q$ is compact and $f : \mathbb{R}^p \to \mathbb{R}^q$ is continuous. Then $f^{-1}(K)$ is compact.

FALSE. For example, let $f : \mathbb{R}^1 \to \mathbb{R}^1$ be given by $f(x) = e^x$. Then $K = [-1, 1]$ is compact but $f^{-1}(K) = (-\infty, 0]$ is not compact (because it is unbounded.)

2. Statement. Let $E \subset \mathbb{R}^2$ be a connected set in the plane. Then the boundary ∂E is connected.

FALSE. For example let $E = B_2(0) - B_1(0)$ be the open annulus whose boundary $\partial E =$ $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \cup \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 4\}$ is two disconnected circles.

3. Statement. Suppose that $K \subset \mathbb{R}^p$ is compact and $f_n, f: K \to \mathbb{R}^q$. If the $\{f_n\}$ converges to f pointwise on K then it also converges uniformly on K.

FALSE. Let $K = [0, 1] \subset \mathbb{R}^1$ and $f_n : K \to \mathbb{R}^1$ be given by $f_n(x) = x^n$. Then $\{f_n\}$ converges pointwise to $f(x) = 0$ if $0 \le x < 1$ and $f(1) = 1$. The convergence is not uniform because if it were, then the uniform limit f would have to be continuous because all f_n are.

(4.) Let $D \subset \mathbb{R}^p$ and $f, f_n : D \to \mathbb{R}^q$ be transformations. State the definition: $\{f_n\}$ converges uniformly to f on D . Suppose that all of the transformations satisfy the same Lipschitz condition: there is a constant $c \in \mathbb{R}$ such that

$$
||f_n(x) - f_n(y)|| \le c||x - y||
$$
 whenever $n \in \mathbb{N}$ and $x, y \in D$.

Show that if $f_n \to f$ uniformly on D, then f also satisfies the Lipschitz condition.

Definition. Let $f, f_n : D \to \mathbb{R}^q$. $\{f_n\}$ converges to f uniformly if for every $\varepsilon > 0$ there is a $N \in \mathbb{R}$ such that

$$
||f_n(x) - f(x)|| < \varepsilon
$$
 whenever $x \in D$ and $n > N$.

Let f be the uniform limit of $\{f_n\}$ on D. We show that f satisfies the Lipschitz condition with the same c. To estimate the difference, choose any $x, y \in D$. Choose $\varepsilon > 0$. By uniform convergence, there is a $N \in \mathbb{R}$ such that $||f_n(z) - f(z)|| < \varepsilon$ whenever $z \in D$ and $n > N$. Take any $m \in \mathbb{N}$ such that $m > N$. By the triangle inequality, the Lipschitz condition for f_m and taking $z = x$ and $z = y$ we obtain

$$
||f(x) - f(y)|| = ||f(x) - f_m(x) + f_m(x) - f_m(y) + f_m(y) - f(y)||
$$

\n
$$
\leq ||f(x) - f_m(x)|| + ||f_m(x) - f_m(y)|| + ||f_m(y) - f(y)||
$$

\n
$$
< \varepsilon + c||x - y|| + \varepsilon.
$$

Since ε may be any positive number, it follows that

$$
||f(x) - f(y)|| \le c||x - y||.
$$

Since x, y were arbitrary, this inequality holds whenever $x, y \in D$.

 \Box

(5.) Let $f : \mathbb{R}^p \to \mathbb{R}$ be a real function. State the definition: f has a partial derivative $\frac{\partial f}{\partial x_j}(a)$ with respect to the jth variable at $a \in \mathbb{R}^p$. Determine whether f has a partial derivative with respect to y at $(0, 0)$, where

$$
f(x,y) = \begin{cases} \frac{x^4 + y^3}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}
$$

Definition. $f : \mathbb{R}^p \to \mathbb{R}$ has a partial derivative with respect to the jth variable at $a \in \mathbb{R}^p$ if the following limit exists

$$
\frac{\partial f}{\partial x_j}(a) = \lim_{h \to 0} \frac{f(a_1, \dots, a_{j-1}, a_j + h, a_{j+1}, \dots, a_n) - f(a_1, \dots, a_{j-1}, a_j, a_{j+1}, \dots, a_n)}{h}.
$$

For the given function, if $y \neq 0$ then

$$
f(0, y) = \frac{0^4 + y^3}{0^2 + y^2} = y,
$$

and if $y = 0$, $f(0, 0) = 0$. In both cases $f(0, y) = y$. It follows that

$$
\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{h - 0}{h} = 1.
$$

Alternatively, the partial derivative is defined if the one variable derivative exists:

$$
\frac{\partial f}{\partial x_j}(a) = \left. \frac{d}{dt} \right|_{t=a_j} f(a_1, \dots, a_{j-1}, t, a_{j+1}, \dots, a_n).
$$

So for this function

$$
\frac{\partial f}{\partial y}(0,0) = \left. \frac{d}{dt} \right|_{t=0} f(0,t) = \left. \frac{d}{dt} \right|_{t=0} t = 1.
$$