
Math 3220 § 2.
Treibergs

Third Midterm Exam Name:
April 3, 2013

(1.) Let f : R2 → R be a function and a ∈ R2 a point. State the definition: f is a differentiable
at a. Determine whether f is differentiable at (0, 0) and prove your answer, where

f(x, y) =


(x+ y)4

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Definition: f is differentiable at a ∈ R2 if there is a 1× 2 real matrix L such that

lim
h→(0,0)

f(a + h)− f(a)− Lh
‖h‖

= 0.

For the given function we observe that f(t, 0) =
t4

t2
= t2 so that fx(0, 0) = 0 and that f(0, t) =

t4

t2
= t2 so that fy(0, 0) = 0. It follows that if f were differentiable at a = (0, 0), then the

differential would have to be given by the Jacobiabn matrix L =
[
fx(0, 0), fy(0, 0)

]
= [0, 0].

Hence for h = (x, y) 6= (0, 0) and a = (0, 0),

|f(a + h)− f(a)− Lh|
‖h‖

=
|f(x, y)− f(0, 0)− [0, 0][x, y]T |

‖(x, y)‖
=

∣∣∣∣ (x+ y)4

x2 + y2
− 0− 0

∣∣∣∣√
x2 + y2

=
|x+ y|4

(x2 + y2)3/2
≤ (2

√
x2 + y2)4

(x2 + y2)3/2
= 16

√
x2 + y2 = 16‖h‖ → 0

as h = (x, y)→ (0, 0). In this estimate we used |x+ y| ≤ |x|+ |y| ≤
√
x2 + y2 +

√
x2 + y2.

(2.) Let f be a real valued function defined on Rp. Suppose that all first partial derivatives of f
exist and are differentiable at all points of Rp. Assume that at some point a ∈ Rp, the differential
vanishes, df(a) = 0, and that the matrix of second derivatives d2f(x) is positive definite at all
points. Show that if x 6= a then f(x) > f(a).

The given conditions are exactly those required to represent f(x) by the first order Taylor’s
formula for f at a. Thus if x 6= a then

f(x) = f(a) + df(a)(x− a) +
1
2
d2f(c)(x− a)2 > f(a) + 0 + 0

where c is in interior point on the line segment [a,x] from a to x, df(a) = 0 by hypothesis and
at the point c ∈ Rp, df2(c) is positive definite. This means that for h = x − a 6= 0 we have
df2(c)(h)2 = hT d2f(a)h > 0.
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(3.) Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

1. Statement. Let L be a q×p real matrix, M be a q×q real matrix and F (x,y) = Lx+My.
Then there is a function g : Rp → Rq such that if (x,y) ∈ Rp × Rq such that F (x,y) = 0,
then y = g(x).

FALSE. Suppose M is not invertible such as M = 0, then we may find two unequal vectors
y 6= z such that My = Mz = 0 and let x = 0. We have f(x,y) = f(x, z) = 0 but there is
no function because g(x) cannot take both valves y and z.

2. Statement. Suppose F ∈ C1(R2,R2). Then F is an open mapping.

FALSE. For example f(x, y) = (x2, y2) is C1 because it is a polynomial, but it doesn’t take
open sets to open sets. It takes the open unit ball B1(0, 0) to the set {(u, v) ∈ R2 : 0 ≤
u, 0 ≤ v and u+ v < 1} which is not open.

3. Statement. Suppose that f ∈ C2(R2). Then
∂2f

∂y∂x
(0, 0) =

∂2f

∂x∂y
(0, 0).

TRUE. We have a theorem that if first partial derivatives and
∂2f

∂y∂x
(x, y) exist in a neighbor-

hood of (0, 0) and
∂2f

∂y∂x
(x, y) is continuous at (0, 0), then the other cross partial exists and

is equal:
∂2f

∂y∂x
(0, 0) =

∂2f

∂x∂y
(0, 0). In this case, the hypothesis gives us that f ∈ C2(R2),

which means that all partial derivatives up to second order exist and are continuous at all
points.

(4.) Show that if F = (f1, f2) : R3 → R2 is a C1 function and a ∈ R3 is a point where dF (a) has
rank 2, then there is a C1 function f3 : R3 → R such that Φ = (f1, f2, f3) : R3 → R3 has a C1
inverse near a.

Since the differential

df(a) =

 ∂f1
∂x1

(a) ∂f1
∂x2

(a) ∂f1
∂x3

(a)

∂f2
∂x1

(a) ∂f2
∂x2

(a) ∂f2
∂x3

(a)

 =

∇f1(a)

∇f2(a)


is rank two, the rows are independent. So there is a vector c ∈ R3 which completes two indepen-
dent vectors to a basis {∇f1(a),∇f2(a), c} (for example c = ∇f1(a)×∇f2(a)). Let f3(x) = c ·x.
Then f3 ∈ C1 as it is polynomial and ∇f3(a) = c. Let Φ = (f1, f2, f3) which is C1 since all fi are.
The differential

dΦ(a) =


∇f1(a)

∇f2(a)

c


is invertible since the rows are independent. The conditions for the inverse function theorem are
satisfied. Hence there is open set U ∈ R3 such that a ∈ U and V = Φ(U) is an open set, and
there is a function G ∈ C1(V,U) such that G is a local inverse of Φ: G ◦ Φ(x) = x for all x ∈ U
and Φ ◦G(y) = y for all y ∈ V .
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(5.) Using Lagrange Multipliers, find where the function f(x, y, z) = x+y+z attains its maximum
on the set S.

S =
{

(x, y, z) ∈ R3 : x2 + y2 = 5 and x− z = 1
}
.

Observe that S is the intersection of a circular cylinder with a slanted plane so it is an elliptical
curve in three space, thus a compact smooth parameterized one dimensional “surface.” Hence
the smooth function f takes its maximum value on S and the point where the maximum occurs
will solve the Lagrange Multiplier equation.

The necessary conditions for the coordinates of the extreme values are first, that the constraint
equations be satisfied

g1(x, y, z) = x2 + y2 = 5
g2(x, y, z) = x− z = 1

and second, that the Lagrange Multiplier equation holds for the unknown constants λ and µ

∇f(x, y, z) = λ∇g1(x, y, z) + µ∇g2(x, y, z)
(1, 1, 1) = λ(2x, 2y, 0) + µ(1, 0,−1)

or, equivalently,

1 = 2λx+ µ

1 = 2λy
1 = −µ.

Thus λ 6= 0 and

µ = −1, x =
1
λ
, y =

1
2λ
.

Inserting into the first constraint,

5 = x2 + y2 =
1
λ2

+
1

4λ2
=

5
4λ2

so
λ = ±1

2
.

If λ = + 1
2 then from the second constraint equation

x =
1
λ

= 2; y =
1

2λ
= 1, z = x− 1 = 1, f (2, 1, 1) = 4.

If λ = − 1
2 then

x =
1
λ

= −2; y =
1

2λ
= −1, z = x− 1 = −3, f (−2,−1,−3) = −6.

We have found all solutions of the necessary conditions. Since the maximum of f on S is one of
these points, it is the solution corresponding to the greatest f , namely, when λ = 1

2 at the point
(2, 1, 1) ∈ S where f = 4.
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