Math 3220 § 1. Treibergs α

Second Midterm Exam Name: Golutions

March 3, 2005

 $(1.)$ Consider the subset of \mathbb{R}^2 given by

$$
E = \left\{ (x, y) : x < 0 \right\} \cup \left\{ \left(\frac{1}{2}, 0 \right), \left(\frac{2}{3}, 0 \right), \left(\frac{3}{4}, 0 \right), \ldots \right\}.
$$

 $(a.)$ Find E° .

 $E^{\circ} = \{(x, y) : x < 0\}$. For the other points $(\frac{1}{n}, 0) \in E$, for no $r > 0$ is $B_r((\frac{1}{n}, 0)) \subseteq E$. (b.) Find \overline{E} .

 $\overline{E} = \{(x, y) : x \le 0\} \cup \left\{(\frac{1}{2}, 0), (\frac{2}{3}, 0), (\frac{3}{4}, 0), \ldots\right\} \cup \{(1, 0)\}\.$ These are points $\mathbf{z} \in \mathbb{R}^2$ such that for all $r > 0$, $B_r(\mathbf{z}) \cap E \neq \emptyset$.

(c.) Find
$$
\partial E
$$
.

 $\partial E = \{(0, y) : y \in \mathbb{R}\} \cup \left\{(\frac{1}{2}, 0), (\frac{2}{3}, 0), (\frac{3}{4}, 0), \ldots\right\} \cup \{(1, 0)\}\)$. These are points $\mathbf{z} \in \mathbb{R}^2$ such that for all $r > 0$, $B_r(\mathbf{z}) \cap E \neq \emptyset$ and $B_r(\mathbf{z}) \cap E^c \neq \emptyset$.

(d.) Determine whether E is connected.

E is not connected. Consider the open sets $U = \{(x, y) : x < 0\}$ and $V = \{(x, y) : \frac{1}{4} < x\}.$ Then $U \cap V = \emptyset$, $U \cap E \neq \emptyset$, $V \cap E \neq \emptyset$ and $E \subseteq U \cup V$, so U and V disconnect E.

(2.) Define: $\mathcal{H} \subseteq \mathbb{R}^n$ is an open set. Let $\mathbf{v} \in \mathbb{R}^n$ be a vector with unit length $\|\mathbf{v}\| = 1$ and $c \in \mathbb{R}$. Using the definition, show that H is open, where $\mathcal{H} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \cdot \mathbf{v} > c \}$

Definition: $\mathcal{H} \subseteq \mathbb{R}^n$ is open if for all $\mathbf{x} \in \mathcal{H}$, there is $r > 0$ so that $B_r(\mathbf{x}) \subseteq \mathcal{H}$.

The set H is an open halfplane. For any point $\mathbf{x} \in \mathcal{H}$, the largest ball about x which is still in H has a radius equal to the distance from **x** to $\partial \mathcal{H}$, namely, let $\varepsilon = \mathbf{x} \cdot \mathbf{v} - c$ which is positive because being in H means $\mathbf{x} \cdot \mathbf{v} > c$. I claim that $B_{\varepsilon}(x) \subseteq \mathcal{H}$. To see this, we choose $\mathbf{z} \in B_{\varepsilon}(\mathbf{x})$ to show that $z \in \mathcal{H}$. This follows from and the Cauchy-Schwarz Inequality:

 $\mathbf{z} \cdot \mathbf{v} = \mathbf{x} \cdot \mathbf{v} + (\mathbf{z} - \mathbf{x}) \cdot \mathbf{v} \geq \mathbf{x} \cdot \mathbf{v} - ||\mathbf{z} - \mathbf{x}|| \, ||\mathbf{v}|| > \mathbf{x} \cdot \mathbf{v} - \varepsilon \cdot 1 = \mathbf{x} \cdot \mathbf{v} - (\mathbf{x} \cdot \mathbf{v} - c) = c.$

(3.) Suppose that $\{b_k\}_{k\in\mathbb{N}}$ is a bounded sequence and $\{x_k\}_{k\in\mathbb{N}}$ converges to zero in \mathbb{R}^3 . Show that the sequence of cross products converges and $\lim_{k\to\infty} (\mathbf{b}_k \times \mathbf{x}_k) = \mathbf{0}$.

The argument follows the \mathbb{R}^1 proof for products, except that we use the inequality $\|\mathbf{x} \times \mathbf{b}\|$ $|\sin \theta|$ $\|\mathbf{x}\|$ $\|\mathbf{b}\| \leq \|\mathbf{x}\|$ $\|\mathbf{b}\|$, where $\theta = \angle(\mathbf{b}, \mathbf{x})$ is the angle between the vectors.

We are given that the sequence ${\{\mathbf b_k\}}$ is bounded. Thus, there is an $M < \infty$ so that $\|\mathbf b_k\| \leq M$ for all k. We are also given that $\mathbf{x}_k \to \mathbf{0}$ as $k \to \infty$. Thus, for all $\varepsilon > 0$ there is an $N \in \mathbf{N}$ so that for all $k \geq N$ we have $\|\mathbf{x}_k - \mathbf{0}\| < \frac{\varepsilon}{1+\varepsilon}$ $\frac{c}{1 + M}$. For this same N we have for all $k \geq N$, using the inequality,

$$
\|\mathbf{b}_k\times\mathbf{x}_k-\mathbf{0}\|=\|\mathbf{b}_k\times\mathbf{x}_k\|\leq \|\mathbf{b}_k\|\|\mathbf{x}_k\|\leq M\cdot\frac{\varepsilon}{1+M}<\varepsilon.
$$

Thus we have shown that $\mathbf{b}_k \times \mathbf{x}_k \to \mathbf{0}$ as $k \to \infty$.

(4.) Determine whether the statement is true or false.

(a.) Statement. Let $A, B \subseteq \mathbb{R}^n$. If A is closed and B is open then $A \setminus B$ is closed.

TRUE! Since B is open, the complement B^c is closed. However $A \setminus B = A \cap B^c$ is closed because it is the intersection of closed sets.

(b.) Statement. If a set $E \subseteq \mathbb{R}^n$ is not closed then it equals its own interior $E = E^\circ$.

FALSE! The set $E = (0,1] \subseteq \mathbb{R}$ is not closed because it does not contain one of its limit points: $\frac{1}{n} \in E$ for $n \in \mathbb{N}$ and $\frac{1}{n} \to 0$, a limit point of E as $n \to \infty$, but $0 \notin E$. However, the interior is $E^{\circ} = (0,1) \neq E$.

(c.) Statement. Suppose $E \subseteq \mathbb{R}$ has connected closure and connected boundary. Then E is connected.

FALSE! Consider the set $E = \mathbf{Q} \subseteq \mathbf{R}$, the set of rational numbers. The closure $\overline{E} = \mathbf{R}$ and FALSE! Consider the set $E = \mathbf{Q} \subseteq \mathbf{R}$, the set of rational numbers. The closure $E = \mathbf{R}$ and the boundary $\partial E = \mathbf{R}$ so both are connected, as they are intervals of \mathbf{R} , but $U = \{x : x < \sqrt{2}\}\$

and $V = \{x : x > \sqrt{2}\}\$ disconnect E: U and V are open sets in **R** such that $U \cap V = \emptyset$, $U \cap E \neq \emptyset$, $V \cap E \neq \emptyset$ and $E \subseteq U \cup V$.

(5.) Suppose that a subset $A \subseteq E \subseteq \mathbb{R}^n$. Show that A is relatively open in E if and only if the condition (O.N.) holds:

$$
(\forall \mathbf{x} \in A)(\exists G \subseteq \mathbf{R}^n : G \text{ is an open set })(\mathbf{x} \in G \cap E \subseteq A).
$$
 O.N.

A subset A is relatively open in E if there is an open set $\mathcal{O} \subseteq \mathbb{R}^n$ such that $A = \mathcal{O} \cap E$. Being relatively open trivially implies the condition (O.N.) If A is relatively open, let $\mathcal{O} \subseteq \mathbb{R}^n$ be the open set such that $A = \mathcal{O} \cap E$. Then for every $\mathbf{x} \in A$, we may take $G = \mathcal{O}$, because then $\mathbf{x} \in A = G \cap E \subseteq E$ satisfies the condition (O.N.)

Now to show that the condition $(0.N.)$ implies that A is relatively open, we have to construct an open set $\mathcal{G} \subseteq \mathbb{R}^n$ so that $A = \mathcal{G} \cap E$. For each $\mathbf{x} \in A$ let $G_{\mathbf{x}} \subseteq \mathbb{R}^n$ be the open set in the definition of (O.N.), such that $\mathbf{x} \in G_{\mathbf{x}} \cap E \subseteq A$. Let $\mathcal{G} = \bigcup_{\mathbf{x} \in A} G_{\mathbf{x}}$. As this is the union of open sets, G is also open. With this set, I claim that A is relatively open, namely $A = \mathcal{G} \cap E$. To see " \supseteq ," suppose that $y \in \mathcal{G} \cap E$. This means that there is an $x \in A$ so that $y \in G_x$. But by the construction of G_x and since $y \in E$ we have $y \in G_x \cap E \subseteq A$. To see " \subseteq ," choose $z \in A$. Again, by the construction of $G_{\mathbf{x}}$, $\mathbf{z} \in G_{\mathbf{z}} \cap E \subseteq \mathcal{G} \cap E$, as \mathcal{G} is the union of such sets.