
Math 3220 § 1.
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Second Midterm Exam Name: Solutions
March 3, 2005

(1.)Consider the subset of R2 given by

E =
{

(x, y) : x < 0
}
∪
{(

1
2
, 0
)
,

(
2
3
, 0
)
,

(
3
4
, 0
)
, . . .

}
.

(a.) Find E◦.
E◦ = {(x, y) : x < 0}. For the other points ( 1

n , 0) ∈ E, for no r > 0 is Br(( 1
n , 0)) ⊆ E.

(b.) Find E.
E = {(x, y) : x ≤ 0} ∪

{
( 1
2 , 0), ( 2

3 , 0), ( 3
4 , 0), . . .

}
∪ {(1, 0)}. These are points z ∈ R2 such that

for all r > 0, Br(z) ∩ E 6= ∅.
(c.) Find ∂E.

∂E = {(0, y) : y ∈ R} ∪
{

( 1
2 , 0), ( 2

3 , 0), ( 3
4 , 0), . . .

}
∪ {(1, 0)}. These are points z ∈ R2 such

that for all r > 0, Br(z) ∩ E 6= ∅ and Br(z) ∩ Ec 6= ∅.
(d.) Determine whether E is connected.

E is not connected. Consider the open sets U = {(x, y) : x < 0} and V = {(x, y) : 1
4 < x}.

Then U ∩ V = ∅, U ∩ E 6= ∅, V ∩ E 6= ∅ and E ⊆ U ∪ V , so U and V disconnect E.

(2.) Define: H ⊆ Rn is an open set. Let v ∈ Rn be a vector with unit length ‖v‖ = 1 and c ∈ R.
Using the definition, show that H is open, where H = {x ∈ Rn : x · v > c}

Definition: H ⊆ Rn is open if for all x ∈ H, there is r > 0 so that Br(x) ⊆ H.
The set H is an open halfplane. For any point x ∈ H, the largest ball about x which is still

in H has a radius equal to the distance from x to ∂H, namely, let ε = x · v − c which is positive
because being in H means x · v > c. I claim that Bε(x) ⊆ H. To see this, we choose z ∈ Bε(x)
to show that z ∈ H. This follows from and the Cauchy-Schwarz Inequality:

z · v = x · v + (z− x) · v ≥ x · v − ‖z− x‖ ‖v‖ > x · v − ε · 1 = x · v − (x · v − c) = c.

(3.) Suppose that {bk}k∈N is a bounded sequence and {xk}k∈N converges to zero in R3. Show
that the sequence of cross products converges and limk→∞(bk × xk) = 0.

The argument follows the R1 proof for products, except that we use the inequality ‖x×b‖ =
| sin θ| ‖x‖ ‖b‖ ≤ ‖x‖ ‖b‖, where θ = ∠(b,x) is the angle between the vectors.

We are given that the sequence {bk} is bounded. Thus, there is an M <∞ so that ‖bk‖ ≤M
for all k. We are also given that xk → 0 as k → ∞. Thus, for all ε > 0 there is an N ∈ N so
that for all k ≥ N we have ‖xk − 0‖ < ε

1 +M
. For this same N we have for all k ≥ N , using the

inequality,
‖bk × xk − 0‖ = ‖bk × xk‖ ≤ ‖bk‖ ‖xk‖ ≤M ·

ε

1 +M
< ε.

Thus we have shown that bk × xk → 0 as k →∞.

(4.) Determine whether the statement is true or false.
(a.) Statement.Let A,B ⊆ Rn. If A is closed and B is open then A\B is closed.

TRUE! Since B is open, the complement Bc is closed. However A\B = A ∩ Bc is closed
because it is the intersection of closed sets.
(b.) Statement.If a set E ⊆ Rn is not closed then it equals its own interior E = E◦.

FALSE! The set E = (0, 1] ⊆ R is not closed because it does not contain one of its limit
points: 1

n ∈ E for n ∈ N and 1
n → 0, a limit point of E as n → ∞, but 0 /∈ E. However, the

interior is E◦ = (0, 1) 6= E.
(c.) Statement.Suppose E ⊆ R has connected closure and connected boundary. Then E is
connected.

FALSE! Consider the set E = Q ⊆ R, the set of rational numbers. The closure E = R and
the boundary ∂E = R so both are connected, as they are intervals of R, but U = {x : x <

√
2}
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and V = {x : x >
√

2} disconnect E: U and V are open sets in R such that U ∩V = ∅, U ∩E 6= ∅,
V ∩ E 6= ∅ and E ⊆ U ∪ V .

(5.) Suppose that a subset A ⊆ E ⊆ Rn. Show that A is relatively open in E if and only if the
condition (O.N.) holds:

(∀x ∈ A)(∃G ⊆ Rn : G is an open set )(x ∈ G ∩ E ⊆ A). O.N.

A subset A is relatively open in E if there is an open set O ⊆ Rn such that A = O ∩ E.
Being relatively open trivially implies the condition (O.N.) If A is relatively open, let O ⊆ Rn

be the open set such that A = O ∩ E. Then for every x ∈ A, we may take G = O, because then
x ∈ A = G ∩ E ⊆ E satisfies the condition (O.N.)

Now to show that the condition (O.N.) implies that A is relatively open, we have to construct
an open set G ⊆ Rn so that A = G ∩ E. For each x ∈ A let Gx ⊆ Rn be the open set in the
definition of (O.N.), such that x ∈ Gx ∩ E ⊆ A. Let G =

⋃
x∈AGx. As this is the union of open

sets, G is also open. With this set, I claim that A is relatively open, namely A = G ∩ E. To see
“⊇,” suppose that y ∈ G ∩ E. This means that there is an x ∈ A so that y ∈ Gx. But by the
construction of Gx and since y ∈ E we have y ∈ Gx ∩E ⊆ A. To see “⊆,” choose z ∈ A. Again,
by the construction of Gx, z ∈ Gz ∩ E ⊆ G ∩ E, as G is the union of such sets.
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