
Math 5010 § 1.
Treibergs −−σιι

Second Midterm Exam Name: Solutions
April 1, 2009

1. Let X be a random variables satisfying the Poisson distribution with parameter λ > 0, and
pmf fX(x) = e−λ λx/x! for x ∈ D = {0, 1, 2, . . .}. (a.)Find E(eX). (b.)Let Y = g(X) where
g(x) = 3 if x ≤ 2 and g(x) = 4 if x > 2. Find the pmf fY (y) for Y .

(a.) The expectation of a function of a random variable is E(g(X)) =
∑

x g(x) fX(x). Thus

E(eX) =
∞∑

x=0

ex e−λ λx

x!
= e−λ

∞∑
x=0

(eλ)x

x!
= e−λeeλ = eeλ−λ.

(b.) The pmf of a function of a random variable is given by fY (y) =
∑

x, g(x)=y fX(x) so

fY (3) =
∑

x, g(x)=3

fX(x) =
2∑

x=0

e−λ λx

x!
= e−λ

(
1 + λ +

λ2

2

)
,

fY (4) =
∑

x, g(x)=4

fX(x) =
∞∑

x=3

e−λ λx

x!
= 1− fY (3) = 1− e−λ

(
1 + λ +

λ2

2

)

and fY (y) = 0 if y /∈ {3, 4}.

2. A standard die is rolled repeatedly. (a.)What is average number of rolls needed for the
appearance of the first six? (b.)What is the probability that the second six occurs at the
twelvth roll? (c.)What is the probability that the first six appears before the fifth roll?

(a.) If X is the number of rolls needed to get the first six, X ∼ geom(p) with p = 1
6 . Hence,

E(X) = 1
p = 6.

(b.) If Y is the number of rolls needed to first get two sixes, it has the negative binomial
distribution with parameters k = 2 and p = 1

6 . Hence, fY (y) =
(
y−1
k−1

)
pk qy−k so

P(Y = 12) = fY (12) =
(

11
1

) (
1
6

)2 (
5
6

)10

=
11 · 510

612
≈ 0.0493.

(c.) The probability that the first six happens before the fifth roll is P(X < 5) =∑4
x=1 fX(x) where fX(x) = pqx−1. Thus

P(X < 5) = fX(1) + fX(2) + fX(3) + fX(4) = p + pq + pq2 + pq3 =
p(1− q4)

1− q
= 1− q4.

Alternatively, P(X < 5) = 1 − P(X ≥ 5) = 1 − P(no six in 4 rolls) = 1 − q4. For p = 1
6

this is P(X < 5) ≈ 0.518.
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3. An urn has three balls numbered 0, 1, 2. Let X be the number on a randomly chosen ball.
Then flip X fair coins and let Y be the number of heads. The joint pmf is given in the
table. Find E(X | Y ).

By summing rows, we find the marginal pmf fY (y) =
∑

x f(x, y). Thus

f(x, y) x = 0 x = 1 x = 2 fY (y)

y = 0 1
3

1
6

1
12

7
12

y = 1 0 1
6

1
6

4
12

y = 2 0 0 1
12

1
12

The conditional expectation is given by E(X | Y ) =
∑

x x fX |Y (x |Y ) which is a random
variable (function of y). Using the formula for conditional pmf,

fX |Y (x|y) = P(X = x|Y = y) =
P(X = x and Y = y)

P(Y = y)
=

f(x, y)
fY (y)

.

Thus, substituting table values,

E(X | Y = 0) = 0 · f(0, 0)
fY (0)

+ 1 · f(1, 0)
fY (0)

+ 2 · f(2, 0)
fY (0)

=
1 · 1

6 + 2 · 1
12

7
12

=
4
7
;

E(X | Y = 1) = 0 · f(0, 1)
fY (1)

+ 1 · f(1, 1)
fY (1)

+ 2 · f(2, 1)
fY (1)

=
1 · 1

6 + 2 · 1
6

4
12

=
3
2
;

E(X | Y = 2) = 0 · f(0, 2)
fY (2)

+ 1 · f(1, 2)
fY (2)

+ 2 · f(2, 2)
fY (2)

=
1 · 0 + 2 · 1

12
1
12

= 2.

4. Suppose k distinguishable balls are distributed to m distinguishable urns in such a way that
each ball is equally likely to go into any urn (and an urn may contain more than one ball).
What is the expected number of occupied urns? Notice that X = X1 + X2 + · · ·+ Xm with
Xi being the random variable equal to 1 if the ith urn is occupied and 0 otherwise.

Assume that the urn chosen for each ball is independent. Then the probability that any
given ball is not in the ith urn is (m− 1)/m and

E(Xi) = P(ith urn is occupied) = 1−P(no ball in ith urn) = 1−
(

m− 1
m

)k

.

Hence

E(X) =
m∑

i=1

E(Xi) = m

[
1−

(
m− 1

m

)k
]

.

5. Let X1, X2, X3, . . . be a sequence of mutually independent random variables. Suppose that
each Xn is uniformly distributed on {1, 2, 3, . . . , k}. How big does the random sample have
to be so that you are 90% sure that your sample mean lies between k

2 and 1 + k
2? In other

words, how big should n be so that P
(

k
2 < 1

n (X1 + X2 + · · ·+ Xn) < 1 + k
2

)
≥ 0.9?

Observe that a random variable Xn that is uniformly distributed on {1, . . . , k} has

E(Xn) =
k + 1

2
, Var(Xn) =

k2 − 1
12

.
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Put
Sn = X1 + X2 + · · ·+ Xn.

Now, because of independence,

E
(

1
n

Sn

)
=

1
n

n∑
i=1

E(Xi) =
k + 1

2
, Var

(
1
n

Sn

)
=

1
n2

n∑
i=1

Var(Xi) =
k2 − 1
12n

. (1)

Chebychov’s Inequality for the random variable Z and a > 0 is

P (|Z −E(Z)| ≥ a) ≤ Var(Z)
a2

.

Applying Chebychov’s inequality to Z = 1
nSn and a = 1

2 and using (1) we find

P
(

k

2
<

X1 + X2 + · · ·+ Xn

n
< 1 +

k

2

)
= P

(
−1

2
<

1
n

Sn −
k + 1

2
<

1
2

)
= P

(∣∣∣∣ 1
n

Sn −
k + 1

2

∣∣∣∣ <
1
2

)
= 1−P

(∣∣∣∣ 1
n

Sn −
k + 1

2

∣∣∣∣ ≥ 1
2

)
≥ 1− k2 − 1

12n
(

1
2

)2 = 1− k2 − 1
3n

We need n big enough so that

1− k2 − 1
3n

≥ 0.9 = 1− 0.1

or
n ≥ 10

3
(k2 − 1).
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