
Math 5010 § 1.
Treibergs −−σιι

Second Midterm Exam Name: SomeSolutions
April 27, 2009

Solutions to the Extra Sample Problems from the Last Third of the Class.

1. Let Xn be a sequence of independent exponential variables with parameter λ for all n. Show
that the sample means converge in probability as n →∞,

1
n

(X1 + · · ·+ Xn) P−→ 1
λ

.

Let Sn = X1+ · · ·+Xn as usual and observe that because of independence and the behavior
of variance under multiplication by a constant, the random variable Sn/n satisfies

E
(

1
n

Sn

)
=

1
n

E

 n∑
j=1

Xj

 =
1
n

n∑
j=1

E(Xj) =
1
n

n∑
j=1

1
λ

=
1
λ

;

Var
(

1
n

Sn

)
=

1
n2

Var

 n∑
j=1

Xj

 =
1
n2

n∑
j=1

Var(Xj) =
1
n2

n∑
j=1

1
λ2

=
1

nλ2
.

Recall the version of Chebychov’s inequality, gotten by applying Theorem 7.4.16.iii to h(x) =
(x−E(X))2. For all a > 0,

P(|X −E(X)| ≥ a) ≤ Var(X)
a2

. (1)

Recall also the meaning of Zn
P−→ Z “convergence in probability.” It means for every ε > 0,

lim
n→∞

P (|Zn − Z| ≥ ε) = 0.

In our case, Zn = Sn/n, Z = 1/λ and apply (1) with a = ε, where ε > 0 is any positive
number. Then

P
(∣∣∣∣ 1nSn −

1
λ

∣∣∣∣ ≥ ε

)
≤

Var
(

1
nSn

)
ε2

=
1

ε2 λ2 n
→ 0 as n →∞.

Thus the sample average converges in probability to its mean, as to be shown.

2. Let P and Q be two points chosen independently and uniformly on (0, 1). Let D denote the
distance between the two points. Find the probability density function fD(d).

We observe that the distance must satisfy 0 < D < 1. Suppose that the coordinates of
the two points are x, y ∈ I = (0, 1). From independence, the joint density is f(x, y) =
fX(x)fY (y) = 1 if 0 < x, y < 1 and f(x, y) = 0 otherwise. The event Ad = {D ≤ d} =
{(x, y) ∈ I2 : |x− y| ≤ d} = {(x, y) ∈ I2 : x− d ≤ y ≤ x + d} is the band of vertical width
2d centered on the x = y line in the unit square. Its probability is for 0 < d < 1,

FD(d) = P(D ≤ d) =
∫

Ad

f(x, y) dx dy = 1− 2
∫ 1

d

∫ x−d

0

dy dx = 2d− d2

where we have subtracted the upper and lower triangle from the unit square to find the
integral over the band. Thus

fD(d) = F ′D(d) =


0, if d ≤ 0;
2− 2d, if 0 < d < 1;
0, if 1 ≤ d.
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3. A system consisting of one original unit plus a spare can function for a random amount of
time X. If the density of X is given (in months) by

fX(x) =

{
Cxe−x/2, if x > 0;
0, if x ≤ 0.

(a) Find C to make fX(x) a pdf.
(b) What is the probability that the system functions for at least five months?
(c) Find the moment generating function MX(t). For what t is it defined?
(d) Find E(X) and Var(X).

For fX to be a pdf, its total probability has to be one. Integrating by parts, let u = x and
dv = e−x/2 so du = dx and v = −2e−x/2 yielding

1 = C

∫ ∞

0

xe−x/2 dx =
(
−2Cxe−x/2

)∣∣∣∞
0

+ 2C

∫ ∞

0

e−x/2 dx = 0 +
(
−4C e−x/2

)∣∣∣∞
0

= 4C

so C = 1/4. Hence the probability that the system lasts at least five months is

P(X ≥ 5) =
1
4

∫ ∞

5

x e−x/2dx =
(
−1

2
x e−x/2 − e−x/2

)∣∣∣∣∞
5

=
7
2

e−5/2 ≈ 0.287.

The moment generating function is MX(t) = E(etX) =

1
4

∫ ∞

0

etx x e−
x
2 dx =

1
4

∫ ∞

0

x e(t− 1
2 )xdx =

(
xe(t− 1

2 )x

4(t− 1
2 )
− e(t− 1

2 )x

4(t− 1
2 )2

)∣∣∣∣∣
∞

0

=
1

(1− 2t)2

where t < 1/2 to make sure the integral converges at infinity. Because MX(0) = 1, the
expectation and variance of X are

E(X) =
M ′

X(0)
MX(0)

=
d

dt

∣∣∣∣
t=0

log MX(t) =
4

1− 2t

∣∣∣∣
t=0

= 4;

Var(X) =
M ′′

X(0)
MX(0)

− M ′
X(0)2

MX(0)2
=

d2

dt2

∣∣∣∣
t=0

log MX(t) =
8

(1− 2t)2

∣∣∣∣
t=0

= 8.

As a double check that these values are correct, this variable is distributed according to the
gamma density with parameters λ = 1/2 and r = 2, as on p. 320.

4. Suppose X1, X2, X3, . . . is a sequence of independent random variables all exponentially
distributed with parameter λ. Let

Yn =
Sn −E(Sn)√

Var(Sn)

where Sn = X1 + X2 + · · ·+ Xn. Show that

Yn
D−→ Z as n →∞

converges in distribution, where Z ∼ N(0, 1) is the standard normal variable. (Don’t quote
CLT.)

The method is the same as proving the de Moivre-Laplace Theorem, or the Central Limit
Theorem. By the Continuity Theorem, it suffices to show that for some b > 0, the moment
generating functions are finite for |t| < b and converge: for all |t| ≤ b/2,

MXn
(t) → MZ(t) as n →∞.
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We know that E(Xn) = 1/λ so that E(Sn) = n/λ. Also Var(Xn) = 1/λ2 so that by
independence, Var(Sn) = n/λ2. Hence

Yn =
λSn√

n
−
√

n.

The moment generating function for the exponential rv, e.g., X1 ∼ exponential(λ) is
MX1(t) = λ/(λ − t) as long as t < λ. Because the mgf of a sum of independent vari-
ables is a product of mgf’s, the moment generating function for Yn is

MYn
(t) = E

(
etYn

)
= E

(
exp

(
tλSn√

n
− t
√

n

))
= exp

(
−t
√

n
)
E
(

exp
(

tλ√
n

Sn

))
= exp

(
−t
√

n
)( λ

λ− λt√
n

)n

since we have viewed the “t” in the mgf as tλ/
√

n which is less than λ for large n. Taking
logarithms, and expanding the logarithm we see that for, say |t| ≤ 1, as n →∞,

log MYn(t) = −t
√

n− n log
(

1− t√
n

)
= −t

√
n + n

[
t√
n

+
t2

2n
+ O

(
1

n
3
2

)]
=

t2

2
+ O

(
1√
n

)
.

It follows from the continuity of the exponential that for all |t| ≤ 1/2,

lim
n→∞

MYn(t) = e
1
2 t2 = MZ(t)

which completes the argument.

5. Suppose X and Y are independent standard normal variables. Find the pdf for Z = X2+Y 2.

By independence, the joint density is

f(x, y) = fX(x)fY (y) =

(
1√
2π

e
− 1

2x2
)(

1√
2π

e
− 1

2y2
)

=
1
2π

e
− 1

2 (x2 + y2)
.

By changing to polar coordinates ρ =
√

x2 + y2 and θ = Atn(y/x), we find that the
cumulative density is for 0 ≤ z,

FZ(z) = P(Z ≤ z) = P(X2 + Y 2 ≤ z) = P
(√

X2 + Y 2 ≤
√

z
)

=
1
2π

∫∫
√

x2+y2≤
√

z

e
− 1

2 (x2 + y2)
dx dy =

1
2π

∫ 2π

θ=0

∫ √
z

ρ=0

e
− 1

2ρ2

ρ dρ dθ

=

(
−e
− 1

2ρ2
)∣∣∣∣∣
√

z

0

= 1− e
− 1

2z

Hence fZ(z) = F ′Z(z) = 1
2e−z/2 for z > 0, which is exponential with parameter λ = 1

2 .
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6. Suppose X and Y are independent standard normal variables. Find E(max(|X|, |Y |)).
The joint density f(x, y) is as in Problem 5. Note that, the function g(x, y) = max(|x|, |y|)
is even with respect to reflections across the axes and across the x = y line

g(x, y) = g(x,−y) = g(−x, y) = g(y, x)

so that knowing g(x, y) = x for the sector 0 ≤ y ≤ x gives the function on the whole plane
by reflection. f(x, y) has the same symmetries, thus the expectation can be computed on
each of the eight sectors. Switching to polar coordinates, using x = r cos θ,

E(g(X, Y )) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) f(x, y) dx dy

=
8
2π

∫ ∞

0

∫ x

0

xe−
1
2 (x2+y2)dy dx

=
4
π

∫ ∞

0

∫ π
4

0

r cos θ e−
1
2 r2

r dθ dr

=
4
π

∫ ∞

0

(
sin θ

)∣∣∣π
4

0
e−

1
2 r2

r2 dr

=
2
√

2
π

∫ ∞

0

e−
1
2 r2

r2 dr.

You can recognize this as an integral for variance of a normal variable. Otherwise, integrat-
ing by parts with u = r so du = dr and dv = r e−r2/2 dr so v = −er2/2 dr,

E(g(X, Y )) =
2
√

2
π

(
−r2 e−

1
2 r2
)∣∣∣∞

0
+

2
√

2
π

∫ ∞

0

e−
1
2 r2

dr

=
√

2
π

∫ ∞

−∞
e−

1
2 r2

dr =
2√
π

,

where we used
∫∞
−∞ e−r2/2 dr =

√
2π and the evenness of the normal integrand.

7. Let C be a circle of radius R. Find the average length of a random chord. This problem has
many possible answers, and that’s why it’s called Bertrand’s Paradox. Of course what
“random chord” means has not been specified and different notions yield different results.

(a) Suppose that we pick two endpoints of a chord at random on the circumference of C
independently and uniformly. Then what is the expected chord length?

(b) Let’s suppose we pick a random line according to the kinematic density, the one that is
invariant under Euclidean motions of the plane. That means, if h is the perpendicular
distance of the line from the origin and θ is its direction, then (h, θ) is uniform in
[0, R]× [0, 2π). What is the expected chord length now?

(a.) Instead of choosing two independent angles uniformly θ1, θ2 ∈ [0, 2π), it is simpler to
choose a ∈ [0, 2π) and b ∈ [0, 2π) instead and transform by (θ1, θ2) = (a, a + b) which has
unit Jacobian, so the joint density is constant f(a, b) = 1/(4π2) on 0 ≤ a, b < 2π. Then use
2π periodicity in angles. The chord length depends on b only, and it is given by

x = 2R sin
(

b

2

)
,

because if the circle is rotated so that midpoint of the chord is on the positive x-axis, then
the height of the endpoint is half of the chord length. The expectation is thus

E(X) =
2R

4π2

∫ 2π

a=0

∫ 2π

b=0

sin
(

b

2

)
db da =

4R

π
.
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(b.) This time the chord length only depends on h and is given by

x = 2
√

R2 − h2.

The density is uniform, hence constant f(h, θ) = 1/(2πR) on 0 ≤ θ < 2π and 0 ≤ h ≤ R.
The expectation is thus

E(X) =
2

2πR

∫ R

h=0

∫ 2π

θ=0

√
R2 − h2 dθ dh =

πR

2
.

8. Suppose that a lighthouse is on an island at a point L which is a distance of A miles from
a straight shoreline, that O is the closest point on the shoreline to the lighthouse and that
its beacon is rotating at a constant velocity. Let Q be the point on shore where the light is
pointing and X the signed distance from O. Given that the beacon is pointing toward the
shoreline at a random instant, what is the probability density function of the distance X?

The formula is x = A tan θ where θ is the angle ∠OLQ and we assume that the light can be
pointing in direction θ uniformly in [−π, π). The light is pointing shoreward if |θ| < π/2.
Thus, using uniformity of θ,

FX(x) = P(X ≤ x | |θ| < π

2
) =

P(X ≤ x and |θ| < π
2 )

P(|θ| < π
2 )

=
P
(
θ ≤ Atn

(
x
A

)
and |θ| < π

2

)
1
2

= 2P
(
−π

2
< θ ≤ Atn

( x

A

))
= 2

Atn
(

x
A

)
+ π

2

2π
=

1
π

Atn
( x

A

)
+

1
2
.

It follows that the pdf for X is

fX(x) = F ′X(x) =
1

Aπ
(
1 + x2

A2

) ,

which is a stretched Cauchy distribution.

9. Let Xn have negative binomial distribution with parameters n and p = 1 − q. Show using
generating functions that if n →∞ in such a way that λ = nq remains constant, then

lim
n→∞

P(Xn = k) =
e−λ λk

k!
.

The pgf for negative binomial variable Xn is

Gn(s) =
(

ps

1− qs

)n

.

Substituting q = λ/n so that n = (n− λ)/n, we see that

Gn(s) =

(
(n−λ)s

n

1− λs
n

)n

=
(

(n− λ)s
n− λs

)n

Taking limits of the logarithm and using l’Hôpital’s rule,

lim
n→∞

log Gn(s) = lim
n→∞

log(n− λ) + log s− log(n− λs)
1
n

= lim
n→∞

1
n−λ −

1
n−λs

− 1
n2

= lim
n→∞

(1−s)λ
(n−λ)(n−λs)

− 1
n2

= (s− 1)λ.
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Hence, using the continuity of the exponential,

lim
n→∞

( ∞∑
k=0

P(Xn = k)sk

)
= lim

n→∞
Gn(s) = e(s−1)λ =

∞∑
k=0

e−λ λk sk

k!

Assuming that the limit and sum can be interchanged (which is OK because the sum
converges uniformly for −1 ≤ s ≤ 1), and equating coefficients,

lim
n→∞

P(Xn = k) =
e−λ λk

k!
.

10. Let X1, X2, . . . , Xn be independent random variables uniformly distributed on [0, 1]. Let
Y = max{X1, X2, . . . , Xn}. Find the cumulative distribution function, density, expectation
and variance of Y . What is the probability that Y > 1− 1

n? What is the limiting probability
as n →∞?

We use the same idea that you used to solve the homework problem for the maximum of
discrete uniform variables. The cumulative density for any Xi is

F (x) = P(Xi ≤ x) =


0, if x ≤ 0;
x, if 0 < x < 1;
1, if 1 ≤ x.

Then, by independence,

FY (y) = P(Y ≤ y) = P(X1 ≤ y and X2 ≤ y and . . . and Xn ≤ y)

=
n∏

i=1

P(Xi ≤ y) = F (y)n =


0, if y ≤ 0;
yn, if 0 < y < 1;
1, if 1 ≤ y.

It follows that

fY (y) = F ′Y (y) = nF (y)n−1 f(y) =

{
n yn−1, if 0 < y < 1;
0, otherwise.

The expectation and second moments are

E(Y ) = n

∫ 1

0

yn dy =
n

n + 1
, E(Y 2) = n

∫ 1

0

yn+1 dy =
n

n + 2

Thus

Var(Y ) = E(Y 2)−E(Y )2 =
n

n + 2
− n2

(n + 1)2
=

n

(n + 1)2 (n + 1)
.

Finally

P
(

Y > 1− 1
n

)
= 1− FY

(
1− 1

n

)
= 1−

(
1− 1

n

)n

→ 1− e−1

as n →∞.

11. Two types of coins are produced in a factory, a fair coin, and a biased one that comes up
heads 55% of the time. You have one of the coins, but do not know if it is the fair one or the
biased one. In order to determine which coin you have, you perform a statistical test: toss
the coin 1000 times. If the coin lands on heads 525 or more times, then you conclude that
it is the biased one. If it lands heads less than 525 times, then conclude that it is the fair
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coin. If the coin is actually fair, what is the probability that we reach a false conclusion?
What would it be if the coin were biased?

The actual probabilities can be computed using the binomial distribution. Since n is large,
we can approximate the answer using the normal distribution to get the numerical answer.

The number of heads if the coin is fair is given by X which is distributed according to the
binomial distribution with parameters n = 1000 and p = 0.50. Let Y be the number of
heads for the unfair coin, which is binomial with parameters n = 1000 and p = 0.55. For
the fair coin, the false conclusion is reached if it lands heads at least 525 times. For the
unfair one, the false conclusion is if there are less that 525 heads. Thus we seek P(X ≥
525) = 1−P(X < 525) and P(Y < 525).

The de Moivre-Laplace theorem says that standardized binomial variables approach the
normal one. The approximation is valid, according to the rule of thumb, if npq ≥ 10. In our
case npq = 1000(0.5)(0.5) = 250 or npq = 1000(.55)(.45) = 247.5 which is well within the
rule of thumb. The probability that the test is wrong for the unfair coin is, by standardizing,
using E(Y ) = np and Var(Y ) = npq,

P(Y < 525) = P
(

Y − np
√

npq
<

525− np
√

npq

)
≈ P

(
Z <

525− 550√
247.5

)
= Φ(−1.589) ≈ 0.0560.

where Z ∼ N(0, 1) is standard normal and Φ(z) its cdf. Similarly

P(X < 525) = P
(

Y − np
√

npq
<

525− np
√

npq

)
≈ P

(
Z <

525− 500√
250.0

)
= Φ(1.581) ≈ 0.9430.

Hence, for the fair coin, the test gives the wrong answer with P(X ≥ 525) ≈ 1− 0.9430 =
0.0570. The normal values were found by interpolating in a table of cumulative normals.

12. Let U be a uniformly distributed on (0, 1) and r > 0. Show how to use U to simulate the
distribution

FX(x) =

{
0, if x ≤ 1;
1− x−r, if 1 < x.

We are looking for a function g : (0, 1) → (1,∞) so that X = g(U) has the desired
distribution. Then for x > 0, since FX is strictly increasing

1− x−r = FX(x) = P(X ≤ x) = P(g(U) ≤ x) = P(U ≤ g−1(x)) = FU (g−1(x)) = g−1(x)

since U is uniform (FU (u) = u for 0 < u < 1.) Solving for x = g(u),

1− g(u)−r = u =⇒ g(u) = (1− u)
− 1

r

13. Let U and V be uniformly distributed on (0, 1). Find the cumulative distribution function
and probability density function of Z = UV .

For 0 < z < 1, the region Az = {(u, v) ∈ I2 : uv ≤ z} is bounded by the coordinate axes,
the lines x = 1 and y = 1 and the curve y = z/x from x = z to x = 1. The density
f(u, v) = 1 for 0 < u, v < 1. Hence for 0 < z ≤ 1,

FZ(z) = P((U, V ) ∈ Az) =
∫ z

ξ=0

∫ 1

η=0

dη dξ +
∫ 1

ξ=z

∫ z/ξ

η=0

dη dξ = z +
∫ 1

ξ=z

z

ξ
dξ = z − z log z.

Hence for 0 < z ≤ 1,

fZ(z) = F ′Z(z) = − log z.
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14. Let 0 < σ, τ and |ρ| < 1 be constants. Suppose X and Y be jointly distributed satisfying the
bivariate normal density for (x, y) ∈ R2,

f(x, y) =
1

2πστ
√

1− ρ2
e−

1
2 Q(x,y)

where the quadratic form is given by

Q(x, y) =
1

1− ρ2

{
x2

σ2
− 2ρxy

στ
+

y2

τ2

}
.

Find the marginal density fY (y) and the correlation coefficient of X and Y .

By completing the square, we obtain

Q(x, y) =
1

1− ρ2

{
x2

σ2
− 2ρxy

στ
+

ρ2y2

τ2
+

(1− ρ2)y2

τ2

}
=

1
(1− ρ2)σ2

(
x− ρσy

τ

)2

+
y2

τ2
.

By the formula for marginal density

fY (y) =
∫ ∞

−∞
f(x, y) dx

=
1

2πστ
√

1− ρ2

∫ ∞

−∞
e
− 1

2(1−ρ2)σ2

(
x− ρσy

τ

)2 − y2

2τ2

dx

=
1

τ
√

2π
e
− y2

2τ2

 1
σ
√

2π(1− ρ2)

∫ ∞

−∞
e
− 1

2(1−ρ2)σ2

(
x− ρσy

τ

)2
dx


=

1
τ
√

2π
e
− y2

2τ2

because, for fixed y, the integral is the total probability of the density of the variable
Z = X − ρσy

τ is a Z ∼ N
(

ρσy
τ , (1− ρ2)σ2

)
normal variable, whose density is

fZ(x) =
1

σ
√

2π(1− ρ2)
e
− 1

2(1−ρ2)σ2

(
x− ρσy

τ

)2
It follows that Y ∼ N(0, τ2). By symmetry,

fX(x) =
1

σ
√

2π
e
− x2

2σ2

so that X ∼ N(0, σ2). Because E(X) = E(Y ) = 0 and E(Z) = ρσy
τ , the covariance is

Cov(X, Y ) =
∫ ∞

−∞

∫ ∞

−∞
xyf(x, y) dx

=
1

τ
√

2π

∫ ∞

−∞
ye
− y2

2τ2

 1
σ
√

2π(1− ρ2)

∫ ∞

−∞
xe
− 1

2(1−ρ2)σ2

(
x− ρσy

τ

)2
dx

 dy

=
1

τ
√

2π

∫ ∞

−∞

ρσ

τ
y2e

− y2

2τ2
dy =

ρσ

τ
Var(Y ) = ρστ.

The correlation coefficient is thus
Cov(X, Y )√

Var(X) Var(Y )
=

ρστ

στ
= ρ.
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