5010 solutions, Assignment 10. Chapter 6: 2, 3, 6, 10, 17.

2. (a) $G(s) = (s + s^2 + s^3 + \dots + s^n)/n$, exists for all s. If $s \neq 1$, we can

rewrite this as $G(s) = s(1-s^n)/[n(1-s)]$. Typo in book. (b) $G(s) = (s^{-n} + s^{-n+1} + \dots + s^{n-1} + s^n)/(2n+1)$ exists for all $s \neq 0$. If also $s \neq 1$, this can be rewritten as $G(s) = s^{-n}(1-s^{2n+1})/[(2n+1)(1-s)]$.

(c) $G(s) = \sum_{k=1}^{\infty} [k(k+1)]^{-1} s^k$. The series converges if and only if $|s| \le 1$. To evaluate the sum, $(sG(s))'' = \sum_{k=1}^{\infty} s^{k-1} = 1/(1-s)$, hence $(sG(s))' = -\ln(1-s) + C_0$, and $C_0 = 0$ follows by setting s = 0. Hence $sG(s) = (1-s) + C_0$. $s \ln(1-s) + s + C_1$, and $C_1 = 0$ follows by setting s = 0. We conclude that

 $G(s) = 1 + (1-s)\ln(1-s)/s$ This formula requires $s \neq 0$ and $s \neq 1$ as well. (d) $G(s) = \sum_{k=1}^{\infty} [2k(k+1)]^{-1}s^k + \sum_{k=-\infty}^{-1} [2k(k-1)]^{-1}s^k$. The first series converges if and only if $|s| \leq 1$, and the second series converges if and only if $|s| \ge 1$, so we have convergence only at |s| = 1, which is not very useful.

(e) $G(s) = \sum_{k \in \mathbb{Z}} [(1-c)/(1+c)]c^{|k|}s^k$. The sum over $k \ge 0$ converges if and only if |s| < 1/c, and the sum over $k \le 0$ converges if and only if |s| > c, so we require c < |s| < 1/c for convergence. In this case we can write $G(s) = G_+(s) + C_+(s)$ $G_{-}(s), \text{ where } G_{+}(s) = \sum_{k=0}^{\infty} [(1-c)/(1+c)](cs)^{k} = (1-c)/[(1+c)(1-cs)]$ and $G_{-}(s) = \sum_{k=-\infty}^{-1} [(1-c)/(1+c)](s/c)^{k} = \sum_{k=1}^{\infty} [(1-c)/(1+c)](c/s)^{k} = [(1-c)/(1+c)]$

3. (a) Always by the theorem on page 242, since $e^{-\lambda(1-s)}$ is the Poisson pgf.

(b) No, because when the sine function is expanded in a power series about 0, the nonzero coefficients have alternating signs.

(c) Yes, shifted negative binomial pgf, assuming that r is a positive integer.

(d) Yes, binomial pgf, assuming that r is a positive integer.

(e) Yes. Expand in a powers series about 0, and check that all coefficients are nonnegative.

(f) Yes, if $-1 < \beta < 0$ and $\alpha = 1/\ln(1+\beta)$. This will ensure that when expanded in a powers series about 0, all coefficients will be nonnegative.

6. If it were possible, we would have real polynomials of degree 5, $H_1(s)$ and $H_2(s)$, such that $sH_1(s)sH_2(s) = (s^2 + s^3 + \dots + s^{12})/(11 = s^2(1 - s^{11})/(11(1 - s)))$, or

$$11(1-s)H_1(s)H_2(s) = 1-s^{11}.$$

But $1 - s^{11}$ does not have such a factorization.

10. (a) X is binomial(n, p), so $G(s) = (q+ps)^n$. Next, $G'(s) = n(q+ps)^{n-1}p$, so $G''(s) = n(n-1)(q+ps)^{n-2}p^2$. Hence E[X] = G'(1) = np and E[X(X-1)] = $G''(1) = n(n-1)p^2$, and $Var(X) = G''(1) + G'(1) - G'(1)^2 = np(1-p)$.

(b) The probability that X is even is $(G(1) + G(-1))/2 = [1 + (q - p)^n]/2$. The reason that this works is that $[(1)^n + (-1)^n]/2 = 1$ if n is even and = 0 if n is odd.

(c) The same idea as in (b) should work here. Let 1, $\omega = -\frac{1}{2} + i\frac{1}{2}\sqrt{3}$ and $\bar{\omega}$ be the three cube roots of unity. Then $[(1)^n + \omega^n + \bar{\omega}^n]/3 = 1$ if n is divisible by 3 and = 0 if n is not divisible by 3 since $1 + \omega + \bar{\omega} = 0$. So the answer is $[G(1) + G(\omega) + G(\bar{\omega})]/3 = [1 + (q + p\omega)^n + (q + p\bar{\omega})^n]/3.$

17. Here X_n is the negative binomial distribution shifted to $\{0, 1, 2, 3...\}$, so its pgf is $[p/(1-qs)]^n$. Now we let $q = \lambda/n$ and let $n \to \infty$. We get

$$\left(\frac{1-\lambda/n}{1-\lambda s/n}\right)^n \to e^{-\lambda}/e^{-\lambda s} = e^{\lambda(s-1)}.$$