
Math 5010 § 1.
Treibergs

Solutions to Ninth Homework
March 20, 2009

226[9] Let Xn ∈ {1,−1} be a sequence of independent random variables such P(Xn = 1) = p =
1 − q = 1 − P(Xn = −1). Let U be the number of terms in the sequence before the first
change of sign and V the further number of terms before the second change of sign. In other
words, the sequence X1, X2, . . . of random variables is made up of a number of runs of +1’s
and runs of −1’s. U is the length of the first run and V is the length of the second run.

(a) Show that E(U) =
p

q
+

q

p
and E(V ) = 2.

(b) Write down the joint distribution of U and V and find Cov(U, V ) and ρ(U, V ).

(a.) To compute the expectations, let us determine the pmf’s for the individual variables
U and V following the procedure outlined in lecture. Observe that set of values of U or
V , the number in the run is Di = N = {1, 2, 3, . . .}, the natural numbers. Let Ai denote
the event that Xi = 1. The idea is to condition on A1, the first value. This determines
whether the first run is +1’s or −1’s. Thus if X1 = 1 and there are u in the first run, then
X2 = X3 = · · · = Xu = 1 and Xu+1 = −1, so if u ∈ D1,

fU (u | A1) = pu−1q.

Similarly, if X1 = −1, then
fU (u | Ac

1) = qu−1 p.

Using the partitioning formula

fU (u) = fU (u | A1)P(A1) + fU (u | Ac
1)P(Ac

1) = pu−1 q p + p qu−1 q = pu q + p qu.

It follows that

P(U ≥ u) =
∞∑

k=u

(
pk q + p qk

)
=

puq

1− p
+

p qu

1− q
= pu + qu.

Thus, using Theorem 4.3.11,

E(U) =
∞∑

u=1

P(U ≥ u) =
∞∑

u=1

(pu + qu) =
p

1− p
+

q

1− q
.

Thus if X1 = 1 and there are u in the first run and v in the second run, then Xu+1 = −1
and Xu+2 = Xu+3 = · · · = Xu+v = −1 and Xu+v+1 = 1, so if v ∈ D2, and independence of
individual Xi’s,

fV (v | A1) = p qv−1.

Similarly, if X1 = −1, then
fV (v | Ac

1) = pv−1 q.

Using the partitioning formula

fV (v) = fV (v | A1)P(A1) + fV (v | Ac
1)P(Ac

1) = p qv−1 p + pv−1 q2 = p2 qv−1 + pv−1 q2.
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Here is an alternative way to compute the expectation. These formulas involve for |z| < 1,

∞∑
k=1

kzk−1 =
d

dz

( ∞∑
k=0

zk

)
=

d

dz

(
1

1− z

)
=

1
(1− z)2

;

∞∑
k=1

k2zk−1 =
∞∑

k=1

[(k + 1)k − k]zk−1 =
d2

dz2

( ∞∑
k=−1

zk+1

)
− 1

(1− z)2

=
d2

dz2

(
1

1− z

)
− 1

(1− z)2
=

2
(1− z)3

− 1
(1− z)2

=
1 + z

(1− z)3
.

(1)

Thus, using (1),

E(V ) =
∑

v∈D2

v fV (v) =
∞∑

v=1

v
(
p2 qv−1 + pv−1 q2

)
= p2

∞∑
v=0

vqv−1 + q2
∞∑

v=0

vpv−1 =
p2

(1− q)2
+

q2

(1− p)2
= 2.

(b.) The joint probability is also gotten by conditioning on A1. Let (u, v) ∈ D1 × D2 and
f(u, v) = P(U = u and V = v). Thus if X1 = 1 and the length of the first run is u and the
length of the second run is v, then X2 = · · · = Xu = 1, Xu+1 = Xu+2 = · · · = Xu+v = −1
and Xu+v+1 = 1, so if v ∈ D2, and independence of individual Xi’s,

f(u, v | A1) = pu−1qvp = puqv.

Similarly, if X1 = −1, then

f(u, v | Ac
1) = qu−1 pv q = pv qu.

Using the partitioning formula

f(u, v) = fV (u, v|A1)P(A1) + f(u, v|Ac
1)P(Ac

1) = pu qv p + pv qu q = pu+1qv + pvqu+1.

Let us check the marginal probabilities.

fU (u) =
∑

v∈D2

f(u, v) =
∞∑

v=1

(
pu+1qv + pvqu+1

)
=

pu+1q

1− q
+

pqu+1

1− p
= puq + pqu;

fV (v) =
∑

u∈D1

f(u, v) =
∞∑

u=1

(
pu+1qv + pvqu+1

)
=

p2 qv

1− p
+

pv q2

1− q
= p2 qv−1 + pv−1 q2.

To compute the further expectations, using (1),

E(U2) =
∞∑

u=1

u2 fU (u) =
∞∑

u=1

u2(puq + pqu) =
pq(1 + p)
(1− p)3

+
pq(1 + q)
(1− q)3

=
p(1 + p)

q2
+

q(1 + q)
p2

E(V 2) =
∞∑

v=1

v2 fV (v) =
∞∑

v=1

v2(p2qv−1 + pv−1q2) =
p2(1 + q)
(1− q)3

+
q2(1 + p)
(1− p)3

=
1 + q

p
+

1 + p

q

E(UV ) =
∞∑

u=1

∞∑
v=1

uv f(u, v) =
∞∑

u=1

∞∑
v=1

uv(pu+1qv + pvqu+1) =
p2q + pq2

(1− p)2(1− q)2
=

1
q

+
1
p
.
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The variances are

Var(U) = E(U2)−E(U)2 =
p(1 + p)

q2
+

q(1 + q)
p2

−
(

p

q
+

q

p

)2

;

Var(V ) = E(V 2)−E(V )2 =
1 + q

p
+

1 + p

q
− 4;

Cov(U, V ) = E(UV )−E(U)E(V ) =
1
q

+
1
p
− 2p

q
− 2q

p
=

p + q − 2p2 − 2q2

pq
.

The expressions may be simplified using

p2 + q2 = p2 + 2pq + q2 − 2pq = (p + q)2 − 2pq = 1− 2pq; (2)

p2 − q2 = (p + q)(p− q) = p− q. (3)

The variance of U may be simplified using (2) and (3),

Var(U) =
p3(p + q + p) + q3(p + q + q)

p2q2
−
(

p2 + q2

pq

)2

=
2p4 + p3q + pq3 + 2q4 − p4 − 2p2q2 − q4

p2q2

=
(p4 − 2p2q2 + q4) + pq(p2 + q2)

p2q2

=
(p2 − q2)2 + pq(p2 − 2pq + q2) + 2p2q2

p2q2

= 2 +
(p− q)2

pq
+

(p− q)2

p2q2
.

The variance of V may be simplified

Var(V ) =
p + 2q

p
+

2p + q

q
− 4 =

pq + 2q2 + 2p2 + pq − 4pq

pq

=
2pq + 2(p2 − 2pq + q2)

pq
= 2 +

2(p− q)2

pq
.

Thus Var(V ) < Var(U) unless p = q = 1
2 .

The covariance may be simplified using (2)

Cov(U, V ) =
p + q − 2p2 − 2q2

pq
=

1− 2(p2 + q2)
pq

=
1− 2(1− 2pq)

pq
=

4pq − 1
pq

=
4pq − (p + q)2

pq
= − (p− q)2

pq
.

The correlation coefficient is thus

ρ(U, V ) =
Cov(U, V )√

Var(U) ·
√

Var(V )

=
−(p− q)2√(

2pq + (p− q)2 + (p−q)2

pq

)
(2pq + 2(p− q)2)

.

I doubt that the text’s answer is correct since neither variance has (p− q)2 as a factor.
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226[25] Let X and Y be independent geometric variables so that for m ≥ 0,

fX(m) = P(X = m) = (1− λ)λm, fY (m) = P(Y = m) = (1− µ)µm,

where 0 < λ, µ < 1.

(a) If λ 6= µ, show that

P(X + Y = n) =
(1− λ)(1− µ)

λ− µ

(
λn+1 − µn+1

)
.

Find P(X = k | X + Y = n).

(b) Find the distribution of Z = X + Y if λ = µ, and show that in this case,

P(X = k | X + Y = n) =
1

n + 1
.

These geometric rv’s are defined for m ∈ D = {0, 1, 2, . . .}. Since the variables are assumed
independent, their joint pmf is the product

f(x, y) = fX(x) fY (y) = (1− λ) (1− µ)λx µy.

(a.) The pmf of the sum of independent variables is given by the convolution formula
Theorem 5.4.11. We observe that the sum is a finite geometric sum.

fZ(z) =
z∑

x=0

fX(x) fY (z − x)

=
z∑

x=0

(1− λ) (1− µ) λx µz−x

= (1− λ) (1− µ) µz
z∑

x=0

(
λ

µ

)x

= (1− λ) (1− µ) µz
1−

(
λ
µ

)z+1

1− λ
µ

= (1− λ) (1− µ)
µz+1 − λz+1

µ− λ
.

Observing that x = k and x+y = n implies x = k and y = n−k, the conditional probability
is gotten using the usual formula for 0 ≤ k ≤ n,

P(X = k | Z = n) =
P(X = k and Z = n)

P(Z = n)
=

P(X = k and Y = n− k)
P(Z = n)

=
f(k, n− k)

fZ(n)
=

λk µn−k(λ− µ)
λn+1 − µn+1

.

(b.) In case λ = µ,

fZ(z) =
z∑

x=0

fX(x) fY (z − x)

=
z∑

x=0

(1− λ)2 λx λz−x

= (z + 1) (1− λ)2 λz.
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The conditional probability is for 0 ≤ k ≤ n,

P(X = k | Z = n) =
P(X = k and Z = n)

P(Z = n)
=

P(X = k and Y = n− k)
P(Z = n)

=
f(k, n− k)

fZ(n)
=

(1− λ)2 λn

(n + 1) (1− λ)2 λn
=

1
n + 1

.

[A.] Two cards are chosen at random without replacement from a standard deck. Let X denote
the number of kings and Y the number of clubs. Find the joint pmf f(x, y), Cov(X, Y ) and
ρ(X, Y ).

The sample space Ω is the set of combinations of 52 cards taken two at a time. Thus
|Ω| =

(
52
2

)
= 1326. Both X and Y take values in Di = {0, 1, 2}. The pairs take values in

D1×D2. If X = x and Y = y then f(x, y) = P(X = x and Y = y). There are 52−16 = 36
cards that are neither kings nor clubs. If X = 0 and Y = 0 both cards are neither king nor
club. If instead Y = 1 then one card is a club that isn’t a king and the other is neither king
nor club. If also Y = 2 both cards are clubs but neither is a king.

f(0, 0) =

(
36
2

)(
52
2

) =
36 · 35
52 · 51

=
105
221

, f(0, 1) =
12 · 36(

52
2

) =
12 · 36 · 2
52 · 51

=
72
221

f(0, 2) =

(
12
2

)(
52
2

) =
12 · 11
52 · 51

=
11
221

If X = 1 there is one king. For Y = 0 the king can’t be a club so there are three remaining
kings. The second card cannot be king nor club, so there are 36 choices. For Y = 1 there is
one king and one club. Either one card is the king of clubs and the other neither king nor
club or one is a non-club king and the other is a non-king club. If also Y = 2 then one of
the cards is a king of clubs and the other is another club so

f(1, 0) =
3 · 36(

52
2

) =
3 · 36 · 2
52 · 51

=
18
221

, f(1, 1) =
1 · 36 + 3 · 12(

52
2

) =
72 · 2
52 · 51

=
12
221

,

f(1, 2) =
1 · 12(

52
2

) =
12 · 2
52 · 51

=
2

221

If X = 2 and Y = 0 both cards are kings but neither is the king of clubs. If instead Y = 1
then there are two kings, one being the king of clubs. If also Y = 2 then it is impossible
that both cards are kings and both cards are clubs.

f(2, 0) =

(
3
2

)(
52
2

) =
3 · 2

52 · 51
=

1
442

, f(2, 1) =
3(
52
2

) =
3 · 2

52 · 51
=

1
442

, f(2, 2) = 0.

The joint pmf is collected in Figure 1.

The marginal probabilities are the row and column sums of the joint pmf. For x ∈ D1 or
y ∈ D2,

fX(x) =
∑

y∈D2

f(x, y); fY (y) =
∑

x∈D1

f(x, y).

The marginal probabilities are also given in Figure 1.

The variables X and Y are not independent, for example because

f(2, 2) = 0 6= 1
221

· 13
221

= fX(2)fY (2).
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x = 0 x = 1 x = 2 fY (y)

y = 0 105
221

18
221

1
442

247
442 = 19

34

y = 1 72
221

12
221

1
442

169
442 = 13

34

y = 2 11
221

2
221 0 13

221 = 1
17

fX(x) 188
221

32
221

1
221 1

Figure 1: Table of joint pmf and marginal probabilities.

The expected values are

E(X) =
∑

x∈D1

x fX(x) =
0 · 188 + 1 · 32 + 2 · 1

221
=

34
221

=
2
13

;

E(Y ) =
∑

y∈D2

y fY (y) =
0 · 19 + 1 · 13 + 2 · 2

34
=

17
34

=
1
2
;

E(X2) =
∑

x∈D1

x2 fX(x) =
02 · 188 + 12 · 32 + 22 · 1

221
=

36
221

;

E(Y 2) =
∑

y∈D2

y2 fY (y) =
02 · 19 + 12 · 13 + 22 · 2

34
=

21
34

;

E(XY ) =
∑

(x,y)∈D1×D2

x y f(x, y) =
1 · 1 · 24 + 1 · 2 · 4 + 2 · 1 · 1

442
=

34
442

=
1
13

.

The variances and covariances are from their computational formulas,

Var(X) = E(X2)−E(X)2 =
36
221

− 22

132
=

400
2873

;

Var(Y ) = E(Y 2)−E(Y )2 =
21
34

− 12

22
=

25
68

;

Cov(X, Y ) = E(XY )−E(X)E(Y ) =
1
13

− 2
13

· 1
2

= 0.

Thus X and Y are uncorrelated, since the correlation coefficient is

ρ(X, Y ) =
Cov(X, Y )√

Var(X)
√

Var(Y )
= 0.
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