Math 5210 § 2.	First Midterm Exam	Name: Solutions
Treibergs		Jan. 29, 2025

1. Let $\mathcal{F} = \{f : \mathbb{N} \to \mathbb{N}\}$ be the set of functions from the natural numbers to the natural numbers. Determine whether \mathcal{F} is countable or uncountable. Why? Let A and B be sets. Define : card $A \leq$ card B. Let A and B be sets and $f : A \to B$ be onto. Show card $A \geq$ card B.

 \mathcal{F} is uncountable by a Cantor type diagonal argument. Argue by contradiction. If \mathcal{F} were countable, we could enumerate $\mathcal{F} = \{f_1, f_2, f_3, \ldots\}$. However the function $g(n) = f_n(n) + 1$ maps \mathbb{N} to itself but is not in the list because g differs from each f_n since $g(n) \neq f_n(n)$ for $n \in \mathbb{N}$. This is a contradiction since the enumeration failed to list all members of \mathcal{F} . Thus \mathcal{F} could not have been countable.

We say card $A \leq \text{card } B$ if there is a one-to-one function $h: A \to B$.

If $f : A \to B$ is onto then for each $b \in B$ the preimage set $f^{-1}(\{b\})$ is nonempty. By the axiom of choice, we may choose an element $h(b) \in f^{-1}(\{b\})$. Now the function $h : B \to A$ is one-to-one, so by the definition, card $B \leq \text{card } A$.

2. Let $\Gamma = \{0.a_1a_2a_3...(\text{base }10) : a_i \in \{0,9\}\}$ be the set of decimal fractions whose digits a_n are only 0's or 9's. Write Γ as the countable intersection of closed sets of intervals. Determine whether Γ has measure zero. Determine whether Γ is countable or uncountable. Is the given $f: \Gamma \to \mathbf{R}$ onto? Is f nondecreasing? Is f continuous?

$$f(0.a_1a_2a_3...(base 10)) = (0.\frac{a_1}{9}\frac{a_2}{9}\frac{a_3}{9}...(base 2)).$$

 Γ is like the Cantor set Δ , except it is defined by decimals and not ternary fractions. If Γ_n denotes the points where the first *n* digits are 0's or 9's, then $\Gamma = \bigcap_{n=1}^{\infty} \Gamma_n$. Note that

0.0999... (base 10) = 0.1000... (base 10)

If the first digit a_1 of x is anything other than 0 or 9 then

0.0999... (base 10) = $0.1 \le x = 0.a_1a_2a_3...$ (base 10) $\le 0.8999...$ (base 10) = .9(base 10)

In other words except for x = .1 and x = .9, x is in the interval (.1, .9) which is not in Γ . Similarly if y is not .01, .09, .91 nor .99, and the first digit is 0 or 9 and the second digit is not 0 nor 9 then

$$y \in (.01, .19) \cup (.90, .99).$$

which is also not in Γ . Thus we have Γ is the intersection of the closed sets Γ_n consisting of 2^n intervals, each of length 10^{-n} . Γ_{n+1} is obtained from Γ_n by removing the middle open interval which is 0.8 of length of the intervals of Γ_n .

$$\begin{split} \Gamma_1 &= & [0,.1] & \cup & [.9,1] \\ \Gamma_2 &= & [0,.01] & \cup & [.09,.1] & \cup & [.9,.91] & \cup & [.99,1] \\ \Gamma_3 &= & [0,.001] \cup [.009,.01] \cup [.09,.091] \cup [.099,.1] \cup [0.9,0.901] \cup [.909,0.91] \cup [.999,.991] \cup [.999,1] \\ \end{split}$$

To see that Γ has measure zero, it suffices to find a countable collection of open intervals that contains Γ and has total length less than any $\epsilon > 0$. Note that Γ_n is covered by a U_n consisting of 2^n open intervals of length $2 \cdot 10^{-n}$ which have total length

$$2^n \cdot 2 \cdot 10^{-n} = 2 \cdot 5^{-n}.$$

This is less that ϵ by taking *n* large. For such $n, \Gamma \subset \Gamma_n \subset U_n$ whose total length is less that ϵ . Thus Γ has measure zero.

 Γ is in one-to-one correspondence with the set S of sequences of ones and zeros, thus is uncountable. If $s = (s_1, s_2, s_3, \ldots)$ is such a sequence, then the correspondence $h : S \to \Gamma$ is given by

$$h(s) = 0.(9s_1)(9s_2)(9s_3)\dots$$
 (base 10).

The function f is similar to the Cantor function. f is nondecrasing because it preserves order from decimal to the binary expansions. It is onto because each $y \in [0,1]$ has a binary expansion $y = 0.s_1s_2s_3...$ (base 2) which is the image of f, namely $y = f(h((s_1, s_2, s_3, ...))))$. This also shows that if y does not have a unique binary representation, one ending in y = * * *1000... and the other ending in y = * * *0111... then it is the image of two numbers y = f(* * *9000...) = f(* * *0999...) = f(* * *1000...), which are the endpoints of an excluded open interval of Γ . Extending f to all of [0,1] by making it constant on excluded intervals yields a nondecreasing and onto function $f : [0,1] \rightarrow [0,1]$, which must be continuous since it makes no jumps as it is onto. The restriction of f to Γ yields a continuous function on Γ ,

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) STATEMENT: The function $d(x, y) = |x^2 y^2|$ is a metric on the real numbers. FALSE. The positive definite condition for metrics is d(x, y) = 0 if and only if x = y. But here, $d(3, -3) = |3^2 - (-3)^2| = 0$ so the positive definite condition for metrics fails.
 - (b) [7] STATEMENT: Let ℓ_{∞} denote the space of bounded real sequences. Then $\|(x_1, x_2, x_3, \ldots)\| = \sup_{i \in \mathbb{N}} |x_i|$ is a norm on ℓ_{∞} .

TRUE. The three conditions for a norm hold: For any $x, y \in \ell_{\infty}$,

- i. $||x|| = \sup_{i \in \mathbb{N}} |x_i| \in [0, \infty);$
- ii. For $a \in \mathbf{R}$, $||ax|| = \sup_{i \in \mathbb{N}} |ax_i| = \sup_{i \in \mathbb{N}} |a| |x_i| = |a| \sup_{i \in \mathbb{N}} |x_i| = |a| ||x||$;
- iii. $||x+y|| = \sup_{i \in \mathbb{N}} |x_i+y_i| \le \sup_{i \in \mathbb{N}} (|x_i|+|y_i|) \le \sup_{i \in \mathbb{N}} |x_i| + \sup_{i \in \mathbb{N}} |y_i| = ||x|| + ||y||.$
- (c) STATEMENT: Let \mathbb{V} be a real vector space with inner product $\langle \bullet, \bullet \rangle$, $\xi \in \mathbb{V}$ a nonzero vector and r > 0. Then there is only one vector that maximizes the function $f(y) = \langle y, \xi \rangle$ among vectors that satisfy $||y|| \leq r$.

TRUE. By the Cauchy Schwarz inequality, for any $y \in \mathbb{V}$ such that $||y|| \leq r$ we have

$$f(y) = \langle y, \xi \rangle \le |\langle y, \xi \rangle| \le ||y|| \, ||\xi|| \le r ||\xi||.$$

If there were such y where f(y) takes its limiting value, we would have equality in the Schwarz inequality which implies $y = k\xi$ for some $k \in \mathbf{R}$. In fact $f(k\xi) = k\langle \xi, \xi \rangle = k \|\xi\|^2 = r \|\xi\|$ takes its limiting value if $k = r/\|\xi\|$. Thus this $y = k\xi$ is the unique maximizer.

4. Let $C = \{(a_i) : a_i \in \mathbb{Q} \text{ for all } i \in \mathbb{N} \text{ and } (a_i) \text{ is a Cauchy Sequence} \}$ be the set of Cauchy sequences of rationals and $\mathcal{N} = \{(a_i) : a_i \in \mathbb{Q} \text{ for all } i \in \mathbb{N}, a_i \to 0 \text{ as } i \to \infty\}$ the set of null sequences of rationals. Consider the quotient space $\mathcal{R} = C/\mathcal{N}$ where the Cauchy sequences (a_i) and (b_i) are equivalent if $(a_i - b_i) \in \mathcal{N}$. Give the definition of multiplication "×" on \mathcal{R} . Show that $x, y \in \mathcal{R}$ implies that $x \times y \in \mathcal{R}$. Check that $x \times y$ is well defined.

Let $x = [(a_i)]$ and $y = [(b_i)]$ be two equivalence classes in \mathcal{R} . Multiplication is defined componentwise

$$x \times y = [(a_i)] \times [(b_i)] = [(a_i b_i)].$$

 $(a_i b_i)$ is a Cauchy sequence so that $x \times y \in \mathcal{R}$. To see it, recall that Cauchy sequences are bounded: there are rational $M_1, M_2 < \infty$ such that

$$|a_i| \le M_1$$
 and $|b_i| \le M_2$ for all $i \in \mathbb{N}$.

Choose rational $\varepsilon > 0$. Since (a_i) and (b_i) are Cauchy sequences, there are $N_1, N_2 \in \mathbb{N}$ such that

$$|a_i - a_j| \le \frac{\varepsilon}{2M_2 + 1} \text{ whenever } i, j \ge N_1 \quad \text{and} \quad |b_i - b_j| \le \frac{\varepsilon}{2M_1 + 1} \text{ whenever } i, j \ge N_1.$$

Let $N_3 = \max\{N_1, N_2\}$. For any $i, j \ge N_3$ there holds

$$\begin{aligned} a_{i}b_{i} - a_{j}b_{j}| &= |a_{i}b_{i} - a_{i}b_{j} + a_{i}b_{j} - a_{j}b_{j}| \\ &= |a_{i}(b_{i} - b_{j}) + (a_{i} - a_{j})b_{j}| \\ &\leq |a_{i}| |b_{i} - b_{j}| + |b_{j}| |a_{i} - a_{j}| \\ &\leq M_{1}\frac{\varepsilon}{2M_{1} + 1} + M_{2}\frac{\varepsilon}{2M_{2} + 1} < \varepsilon. \end{aligned}$$

Thus $(a_i b_i)$ is a Cauchy sequence of rationals as claimed.

Choose equivalent Cauchy sequences $(a'_i) \sim (a_i)$ and $(b'_i) \sim (b_i)$ so that $a'_i - a_i \to 0$ and $b'_i - b_i \to 0$ as $i \to \infty$. To show that multiplication is well defined we claim $(a'_ib'_i) \sim (a_ib_i)$. Using the fact if (p_i) is bounded and $q_i \to 0$ as $i \to \infty$ implies $p_iq_i \to 0$ as $i \to \infty$, we have from the boundedness of Cauchy sequences, as $i \to \infty$,

$$a'_i b'_i - a_i b_i = a'_i b'_i - a'_i b_i + a'_i b_i - a_i b_i = a'_i (b'_i - b_i) + b_i (a'_i - a_i) \to 0 + 0.$$

Thus multiplication doesn't depend on representatives so is well defined.

5. Let $\mathcal{R} = \mathcal{C}/\mathcal{N}$ with "+" and "×" as in Problem 4 and let $[(a_i)], [(b_i)], [(c_i)] \in \mathcal{R}$. What is the definition of $[(a_i)] > [(b_i)]$? Suppose that $[(a_i)] > [(b_i)]$ and $[(c_i)] > 0$. Show using your definition that $[(a_i)] \times [(c_i)] > [(b_i)] \times [(c_i)]$.

The definition of ordering $[(a_i)] > [(b_i)]$ is that there is a rational $\varepsilon_1 > 0$ and $N_1 \in \mathbb{N}$ such that

$$a_i - b_i > \varepsilon_1$$
 whenever $i \ge N_1$

Similarly, $[(c_i)] > 0^* = [(\bar{0})]$ means there is a rational $\varepsilon_2 > 0$ and $N_2 \in \mathbb{N}$ such that

 $c_i > \varepsilon_2$ whenever $i \ge N_2$.

Let $N_3 = \max\{N_1, N_2\}$. Then

$$(a_i c_i) - (b_i c_i) = (a_i - b_i)c_i > \varepsilon_1 \varepsilon_2$$
 whenever $i \ge N_3$.

Thus by definition, $[(a_i)] \times [(c_i)] = [(a_i c_i)] > [(b_i c_i)] = [(b_i)] \times [(c_i)].$