

All spaces are metric spaces.

Do all problems, but you have a choice on $# 4$. Exam is closed book and closed note. Good Luck!

- 1. (a) [10] Let $\{x_m\} \subset X$. What does it mean for $x_n \to x$ as $n \to \infty$?
	- (b) [10] If $x_n \to x$ and $y_n \to y$ in the metric space (X, d) , prove that $d(x_n, y_n) \to d(x, y)$ in R.
- 2. (a) [10] If X is compact and $f : X \to Y$ is continuous, prove $f(X)$ is compact.
	- (b) [10] If X is compact and $f: X \to Y$ is continuous, prove that f is uniformly continuous.
- 3. (a) [10] Using the definition of the Riemann Integral (and its existence), prove that if $f : [a, b] \to X_{\text{Banach}}$ is continuous, then

$$
\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx.
$$

(b) [10] Let $f_n, f : [a, b] \to X_{\text{Banach}}, f_n$ are continuous and $f_n \to f$ uniformly, prove

$$
\int_a^b f_n(x) \, dx \to \int_a^b f(x) \, dx.
$$

- (c) [10] Suppose that the convergence in (3b) is pointwise, but not uniform. Give a counterexample to show that the integrals may not converge in this case.
- 4. [30] Pick ONE of the following theorems to carefully prove (and state if required.)
	- (a) State and prove the Contraction Mapping Theorem. Include the definition of a contraction mapping.
	- (b) State and prove the chain rule for compositions of differentiable maps between Banach Spaces. Include the definition of what it means for $f : X \to Y$ to be differentiable at $x \in X$.
	- (c) Let X be compact and Y be complete. Consider the function metric space

$$
\mathcal{C}(X,Y) = \{ f : X \to Y : f \text{ is continuous} \}, \qquad d_{\infty}(f,g) = \sup_{x \in X} d(f(x),g(x))
$$

We've shown that $\mathcal{C}(X, Y)$ is a metric space. Show that $\mathcal{C}(X, Y)$ is complete.