
Math 5210 § 1.
Treibergs

First Midterm Exam Name: Solutions
February 8, 2017

1. Some real numbers x ∈ (0, 1] do not have unique decimal expansions, for example

.375000 . . . =
3

8
= .374999 . . . .

Determine whether the set of those real numbers in (0, 1] whose decimal expansions are not
unique is countable and prove your result.

We shall show that the numbers without unique decimal expansions is Countable. Denote
the numbers without unique decimal expansion by

S = {x ∈ (0, 1] : x does not have a unique decimal expansion}

x ∈ S means that x has a terminating decimal expansion

S = {x = (.a1a2 . . .) ∈ (0, 1] : ai ∈ {0, 1, 2, . . . , 9} and (∃N ∈ N)(∀i ≥ N) ai = 0.}

Let the decimal fractions with n digits be denoted

Sn = {x = (.a1a2 . . .) ∈ (0, 1] : ai ∈ {0, 1, 2, . . . , 9} and (∀i > n) ai = 0.}.

We have S ⊂ ∪∞n=1Sn. Equality doesn’t hold because we have double-counted fractions
that end in zero. Each of the Sn is finite with cardinality m(n) = 10n. Now a countable
union of finite sets is countable. This is most easily seen by a diagonal enumeration. If
Sn = {x1,1, x1,2, . . . , x1,m(n)} then we may enumerate the union as

x1,1, x2,1, x1,2, x3,1, x2,2, x1,3, . . .

omitting the entries beyond the last entry of each row.

2. Let (X, ‖ • ‖) be a nontrivial real normed linear space and G = {x ∈ X : ‖x‖ > 3}.
Define: G is open. Show that G is open. Define: x is a limit point (same as cluster point)
of G. Determine the limit points of G and prove your result.

A subset E ⊂ X is open if for all y ∈ E there is r > 0 so that Br(y) ⊂ E. Here, the open
ball is given by

Br(y) = {x ∈ X : ‖x− y‖ < r}.

To see that G given here is open, choose g ∈ G. Let r = ‖g‖ − 3 > 0. Then Br(g) ⊂ G. To
see it, choose z ∈ Br(g). Then by the triangle inequality,

‖z‖ = ‖z − 0‖ ≥ ‖g − 0‖ − ‖g − z‖ > ‖g‖ − r = ‖g‖ − (‖g‖ − 3) = 3.

Hence z ∈ G and so G is open.

A limit point x of E ⊂ X is such that for all r > 0 there is y ∈ G such that 0 < ‖y− g‖ < r.

Claim: the set of limit points G′ = E where E = {x ∈ X : ‖x‖ ≥ 3}. To see it, choose
g ∈ E and r > 0 to show E ⊂ G′. Let α = 1 + r/2‖g‖ and y = αg. Since g 6= 0 and α > 1
we have g 6= y. Also, since ‖g‖ ≥ 3 we have ‖αg‖ = |α|‖g‖ > 1 · 3 = 3 so y ∈ G. Finally,

‖y − g‖ = ‖αg − g‖ = |α− 1|‖g‖ =
r

2‖g‖
· ‖g‖ =

r

2
< r

so y ∈ Br(g). To see G ⊂ E, suppose g /∈ E or ‖g‖ < 3. Then Br(g)∩ G = ∅ if r = 3− ‖g‖.
Thus g cannot be a limit point, g /∈ G′.
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3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample. In all problems, let (X, d) be a metric space.

(a) If K ⊂ X is closed and bounded, then K is compact.

False. The closed ball
A = {f ∈ C(R) : ‖f‖ ≤ 1}

is closed and bounded in C(R). However A contains the subsequence {fn} where

fn(x) =

{
(x− n)(x− n− 1), if n ≤ x ≤ n+ 1;

0, otherwise.

that has the property that if i 6= j then ‖fi − fj‖ = 1
4 . Thus no subsequence can be

Cauchy so will not converge. So A is not sequentially compact.

(b) Suppose K ⊂ X is compact and δ > 0. Then there are finitely many points {k1, . . . , kn} ⊂
K such that every point of K is within δ of one of the kn’s:
(∀x ∈ K)(∃` ∈ {1, . . . , n})(d(x, k`) < δ).

True. Consider the open cover of K given by the balls {Bδ(k) : k ∈ K}. By the
Heine-Borel Property, there is a finite subcollection {k1, . . . , kn} ⊂ K such that

K ⊂
n⋃
i=1

Bδ(ki)

Thus any k ∈ K is in one of the balls k ∈ Bδ(kj) for some 1 ≤ j ≤ n. Thus d(k, kj) < δ.

(c) Let {xn} ⊂ K be a sequence in a compact subset K ⊂ X and let f : X → R be a
continuous function. Then the real sequence {f(xn)} has a convergent subsequence.

True. Since K is sequentially compact, there is a convergent subsequence xnj →
x∞ ∈ K as j →∞. But since f is continuous, then f(xnj

)→ f(x∞) as j →∞.

4. The real numbers were defined to be equivalence classes R = C/∼, where C is the set of
Cauchy Sequences of rational numbers, and where two sequences are equivalent, (ai) ∼ (bi),
if for every positive rational number ε, there is N ∈ N so that

|ai − bi| < ε whenever i ≥ N .

If [(ai)], [(bi)] ∈ R, define [(ai)] < [(bi)]. Assuming that the rationals are an Archimedean
ordered field, show that for every class [(ai)] > 0∗, there is a natural number n such that
1∗ < [(ai)]n

∗, where q∗ ∈ R means the rational number q viewed as a real number.

[(ai)] < [(bi)] means there is a rational ε > 0 and N ∈ N such that

ai + ε < bi whenever i ≥ N .

Supposing that 0∗ = [(0, 0, 0, . . .)] < [(ai)], there is a rational ε > 0 and an N ∈ N so that

ε < ai whenever i ≥ N .

By the Archimedean Property of the rationals, there is an n ∈ N such that n > 2/ε. Thus
for ε′ = 1 we have

nai > nε > 2 = ε′ + 1 whenever i ≥ N .

Hence
n∗[(ai)] = [(nai)] > [(1, 1, 1, . . .)] = 1∗.
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5. Let F ⊂ C(X) be a family of continuous functions on the compact metric space X and
‖ • ‖sup be the sup-norm. Define: F is uniformly equicontinuous. Consider the sequence
{fn} ⊂ C([0, 1]). Suppose that the derivative f ′n(x) exists for all n and all x ∈ [0, 1] and
that for some constant M <∞ the functions satisfy

‖fn‖sup + ‖f ′n‖sup ≤M for all n. (1)

Does there exist a convergent subsequence? (You may use theorems proved in class.)

The family F is uniformly equicontinuous if for every ε > 0 there is a δ > 0 such that

|f(x)− f(y)| < ε whenever f ∈ F and x, y ∈ X such that d(x, y) < δ.

The inequality (1) says |f ′n(x)| ≤ M for every n ∈ N and every x ∈ [0, 1]. For any n and
x, y ∈ [0, 1], by the mean value theorem there is a c between x and y such that

|fn(x)− fn(y)| = |f ′(c)(x− y)| ≤M |x− y|

Hence {fn} are uniformly M -Lipschitz. It follows that {fn} is uniformly equicontinuous.
Indeed, for any ε > 0 let δ = ε/(1 +M). Then for any n ∈ N and any x, y ∈ [0, 1] such that
|x− y| < δ, we have

|fn(x)− fn(y)| ≤M |x− y| < Mδ = M · ε

1 +M
< ε,

showing {fn} is uniformly equicontinuous. By the (corollary of the) Arzela-Ascoli theorem,
there is a subsequence fnj

which converges uniformly on [0, 1] to a continuous function as
j →∞.
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