Math 5210 § 1. Second Midterm Exam Name: Golutions
Treibergs March 29, 2017

1. State the Contraction Mapping Theorem. Let X = {p € C(R",R") : ||¢llec < oo} be
the space of continuous maps. X is complete under the sup-norm | - |e. Suppose for
some r € (0,1) the map a € X satisfies |a(x) — a(y)| < r|lz — y| for all x,y € R™. Let
F(z) = z+a(z). Show that F has a unique inverse map for the form G(y) = y+b(y) where
be X. [Hint: Solve I = F oG for b, where I(y) =y is the identity map.]

Contraction Mapping Theorem. Let (X,d) be a complete metric space and f : X — X
be a map such that for some r € (0,1),

d(f(z) — f(y)) <rd(z,y)  foralzyeX.

Then there is a unique fized point z € X such that z = f(z).

We argue that F(z) = x + a(z) is invertible. It is injective because for any z,y € R" we
have

[F(z)=F(y)| = [e+a(z) —y—a(y)| = |z —y|-a(z) —a(y)| = |z —y|—r|z—y| = (1-r)|z—y|

Thus F(z) = F(y) implies x = y so F is injective.

Now we show that F is surjective by constructing a right inverse of the form G(y) = y+b(y)
where b € X. Thus we substitute in the equation I = F o G to get

y=F(G(y) = G(y) +a(G(y)) = y +b(y) + aly + b(y))
b(y) = —a(y + bly)) = T[b)(y)-

The solution is a fixed point of the Nemitskii operator T. If b € X then T[] is continuous
because it is the composition of continuous functions and 7' : X — X because for all y € R"”,

IT)(y)] < llalloo

so T'[b] is bounded. We claim that 7" is a contraction on X. Indeed,

IT[b1](y) — Tb2](y)| = | — aly +b1(y)) +aly + ba(y))| < rly +bi(y) —y — b2(y)|
=7b1(y) — b2(y)| < 7llbr — b2[l0c-

Taking the supermum over y € R" gives
[T[b1] = T'[b]l[oc < 7lb1 — b2l

so T is a contraction on the complete space X. Hence it has a unique fixed point b € X
and G(y) = y + b(y) exists. This proves the map F is surjective. Indeed, for any y € R"
we have z = G(y) € R" so that F(z) = F(G(y)) = y. Thus F is surjective and so there is
an inverse map F~!: R® — R"™. Finally, we check that G is the inverse. Indeed, for every
y we have

F(F~Y(y) =y = F(G(y)).
Since F is injective, F~1(y) = G(y).
Though not part of the proof, here is how to see that X is complete. Suppose {f,} C X is
a Cauchy sequence. Then for all € > 0 there is N € N such that

| fo — fulloo <€  whenever m,n > N.



This implies that at any point x € R,
[frm(x) = fr(z)] <€ whenever m,n > N.

Hence {f.(z)} is a Cauchy sequence in R™, thus convergent f,(x) — f(z) as n — oo.
As f, is continuous and the convergence f,, — f is uniform in R", we conclude that f is
continuous. Finally, taking € = 1 we fix n sufficiently large so that || f, — f|] < e which
implies

[flloe = I1(f = fn) + fulloo SIS = frlloe + [frlloc <1+ [Ifnlloc < o0

so f is bounded.

. For a continuous, 2m-periodic function f, the Nth Fourier polynomial is
N -
SNf(-%‘) = §Ckeikx’ where Cp = % /_7r f(t) e—zkt dt.

Define the Dirichlet Kernel, Dy (t). Write Sn f(x) in terms of Dn(t). Assume that f is
a continuously differentiable 2m-periodic function which in a § > 0 neighborhood of xg € R
equals for some constants a and j3,

f(t) = a+ Bsin <t2xo> if |xo — t] < 4.

Show that S f(xo) — f(xg) as N — 0.
The Dirichlet kernel is

1

N sin (N + 2) t

Dy(t)= ) &M= — N
k=-N sin <2)

Thus the Fourier polynomial

N T
Swf@) = 3 epeits = % F@ — ) D () dt.
k=—N

Let zp and 6 > 0 be as in the problem. Then

S fa) = flan) = 5 [ [Fao =) = fla)l Dty
= % Zg(t) sin (N + ;) tdt

S L Yoo

I+ IT+1II,

where

flao— 1) = fwo)

g(t) = . <;)




When [t| < § we have

a + Bsin <(x0_;)_x0> — « — f[sin (xo—xo)

g(t) = $n<;) =-p

()
- sin( N+ = | tdt
2 \t\<5 2

because the integrand is an odd function. When [¢| > § we don’t divide by zero so g is
continuously differentiable and

so that

1] = =0

[F(wo — 1) — f(z0)] cos (t>

d@)==_f%xz_t)— ; :
sin (2> 2 sin’ <2>
By the mean value theorem f(xo—1t) — f(zg) = —f'(c)t where ¢(t) is between xg and 29—t
—f"(o)t

g(t) = Sm@

Using sint/2 > t/x is increasing on [0, 7],

g < 7l S|
(1) < [P I

) ()

Integrating by parts,

1
1 cos (N+2)t 1
Il = — "t)————L—dt + —
2T t=0 N+

With a similar estimate for 11,

(3

1|+ |111] <
) N+14d
sin (2> (N—|— %) +3

Hence
|SNf(x0)—f(x0)|§I|+|II+|III|:O<) as N — oo.



Alternately, we may use the Riemann-Lebesgue Lemma. Since g is continuous on [4, 7], we

see that .
4 1
1l =— g()51n<N+ )tdt—)O as N — oo.
27'(' S 2

Similarly for ITI. Thus Sy f(zo) — f(xo) but at an unknown rate as N — oo.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterezample. In all problems, let (X, d) be a complete metric space.

(a) Let (KK(R™), h) be the compact subsets of R™ with Hausdorff metric. Let {c,} C R™ be
a sequence such that ¢,, = ¢ and {r,} be a real sequence such that rn, > 0 and r, — .
Then the sequence of closed balls B,, C R™ with center ¢, and radius r, converges in
(K(R™), h).

TRUE. Observe that because B(cg, r¢) C (B(co, 7)) jrp—r] C (B(ChsTh))jco—ex]) jro—ra| =
(B(CksTk))|co—cy|+|re—rs|» €ach ball is in the |c; — cg| 4 [ry — 7y | collar of the other

B, C (Bk)|cz*ck\+\7“z*7“k|7 By, C (Bf)|ce*ck\+|7‘e*7“k|

so h(By, Be) < |ce — ck| + |re — rx|. Hence {By} is a Cauchy sequence in (K(R™), h)
because {cx} C R" and {r.} C R are Cauchy sequences. But ((R"), h) is complete
so { By} is convergent.

(b) Suppose f: X — X satisfies d(f(z), f(y)) < d(z,y) for all x,y € X such that x # y.
Then f has a fized point: there is z € X such that z = f(z).

FALSE. The map is not assumed to be r-Lipschitz for some r € (0, 1) so the Contraction
Mapping Theorem does not apply. Any differentiable function f : R — R will provide
a counterexample provided f(x) > z for all z € R so f has no fixed point and provided
|f'(x)] < 1 everywhere so by the Mean Value Theorem, if 2 # y then |f(z) — f(y)| =
|f'(c)]|x — y| < |x — y| where ¢ is some number between = and y. An example is

fl@)=+v1+ a2

(¢) Let A C C(M) be an algebra of continuous real functions on compact M C X such
that for every x,y € M there is g € A such that g(x) # g(y). Then any continuous
function on M may be uniformly approximated by functions of A.

FALSE. The algebra also needs functions that are nonzero at any given point for
the Stone-Weierstrass Theorem to apply. So for example, consider the polynomials
without constant term A = {>°;_ cka® : ¢4 € R, n € N} on [-1,1]. Then f(z) =

cannot be approximated in sup-norm because for every ¢ € A we have ||f — ¥||co >

1£(0) = ¥(0)] = 1.

4. The Fourier Series for the sawtooth function p(x) = |x| on the interval |x| < 7 and extended
to R by periodicity of period 27 is

T 4= cos(2k — 1)z
B~y %; 2k—1)2 (1)

Let X = Cper([—m, m]) be the 2m-periodic continuous functions on R. Define the usual com-
plex inner product (f, g) and corresponding distance ||f — g|| on X. Let V, = {3.", cre™*® :
¢, € C} be the linear subspace of trig polynomials of degree n. Let Py, : X — V,, be the
orthogonal projection to V,,. Find Py, [¢] and explain. What is the distance || — Py, [¢]| ?
Do the Py, [¢] approzimate @ in || o] ¢



The inner product and norm on X are

(ha) =5 [ faae 11 = VIR,

The ¢ (x) = %@ for k € Z are an orthonormal set of functions. The projection to Vy =

span{e N® = iN-Dz iN@1 j5 oiven by the Fourier polynomial
N
Py(f)= > (fw)vu(e Z cxe™ = Sy f(x)

k=—N
where

e = (f, k) = o _ﬂ f(t)e *t at.

In the present case, for N > 1 and using cosf = %(ew +e7),

N
2T 2

Sonp(x) = Son—10(x) *7*;2 2k;—1

k:l

(ei(2k71)a: n 64(214:71)@«) .

so for k > 0,

us 2 0
chn = — C _ = —— 5 C = .
0= +(2k—1) T2k — 1) +2k

We know that {1} is a complete orthonormal system because of Fejér’s theorem, that any
continuous function can be uniformly approximated by trig polynomials, hence also in the
L2 sense. It follows that Parseval’s formula holds

o0

Y lel =l

k=—0o0

However, we also know that the norm of the projection
n
1Pagll? = [1Snell® = > lexl?
—n

Using the orthogonality of P, and ¢ — P, we see that

le = Pagll® = llell” = [Pagll®> = > lex> =0
|k|>n

as n — o0.

. Another summability kernel for Fourier Series, due to Dunham Jackson is

NG A
3 sin — »
Jn(t) = _ i
®) 2(n+1)(2n? +4n + 3) sin t k; (2n k€
2 =—zn

which can be expressed as a trigonometric sum of degree 2n.

Jn has the three properties of an approzimate identity on [—m, 7). State the third property
and show that Jy satisfies it.

(a) Jn(z) > 0.



(b) [T Jn(z)dz = 27.

(¢) |For any ¢ > 0, / JIp(z) dz — 0 as n — oo.

s<|el<n

Because sint/2 is increasing, for § < |z| <,
3

Jn(r) <
2(n + 1)(2n? + 4n + 3) sin* <g)

SO

3
OS/ Jn(z) da < il —0 asn — oo.
o< |z|< 7

(n+1)(2n2 + 4n + 3) sin* <g)

Show using J,, that there if f is a continuous 2mw-periodic function, then there is a sequence
of trigonometric polynomials such that

Ilf = Pnllc — 0, as n — 0o.

Because J,,(t) is trigonometric, the convolution

pul) = - / Jnle — t)£(t) dt

:%_ﬂ-

is a trigonometric polynomial of degree 2n. Also, f is uniformly continuous at all = so for
any € > 0 there is 6(¢) > 0 so that

|f(z)— fly)] < % whenever z,y € R satisfy |z —y| <.

For any € > 0 we let § = §(g) as above take N so large that

TE
Jn(xr)dr < ——— whenever n > N.

Now if n > N we estimate at any « using (b) and (c),

n(e) ~ 1)1 < |- [ a0~ sl an

<o [ i@ =0 - f@

o [ M=t - @@t 5o [ -t - @l d
21 Jjy)<s 27 Js<|ti<n
= Il

< I Juyes JIn(t) dt + - /6§|t§7r In(t) dt
- [ 1 fll

< E - Jn(t) dt+m

< = + t= €
2 2

Thus p, — f uniformly as n — oco.



