
Math 5210 § 2.
Treibergs

Second Midterm Exam Name: Solutions
Feb. 26, 2025

1. Let (M,d) be a metric space and let E,F ⊂ M . Define: E is open. Define F is closed.
Define x ∈ M is a limit point of F . Prove directly that F is closed if and only if it contains
its limit points.

E is open if for every x ∈ E there is r > 0 so that Br(x) ⊂ E, where Br(x) = {y ∈ M :
d(x, y) < r} is the open ball of radius r about z. F is closed if the complememt F c = M\F
is open.

x ∈ M is a limit point of F if for every ε > 0 we have (Bε(x)\{x}) ∩ F ̸= ∅.
Assume that F is closed. Arguing by contrapositive, we show if x is not in F then it is not
a limit point of F . Since x ∈ F c is open, there is an r > 0 such that Br(c) ⊂ F c. Now if
ε < r then Bε(x)\{x} ⊂ Br(x) ⊂ F c so (Bε(x)\{x})∩ F = ∅ so x is not a limit point of F .

Now, assume that F contains its limit points. Arguing by contrapositive, we show if F is
not closed there is a limit point of F not in F . Thus F c is not open: there is x ∈ F c such
that for all ε > 0 the ball Bε(x) ∩ F ̸= ∅. As x /∈ F this says x is a limit point of F which
is not in F .

2. Let (M,d) be a metric space. Define: M is compact. Complete the statement of a theorem
you’ll use to answer the question.

Theorem. (M,d) is a compact metric space if and only if . . .

Let (M,d) be a compact metric space. Suppose that (Fn) is a decreasing sequence of
nonempty closed sets in M , and that

⋂∞
n=1 Fn is contained in an open set G. Show that

Fn ⊂ G for all but finitely many n.

Our author defines (M,d) to be compact if it is complete and totally bounded.

Theorem. (M,d) is a compact metric space if and only if every open cover has a finite
subcover. Namely, if {Gα}α∈A is a collection of open sets such that M ⊂

⋃
α∈A Gα then

there are finitely many indices {α1, . . . , αk} such that M ⊂ Gα1
∪ · · · ∪Gαk

.

To prove the assertion, let I =
⋂∞

n=1 Fn be the intersection. Consider the collection of open
sets {G} ∪ {F c

n : n ∈ N}. This collection covers M . If x ∈ I then x ∈ G. If x /∈ I then
there is n0 so that x /∈ Fn0

, in other words x ∈ F c
n0
.

By the Theorem. there is a finite subcollection n1 < n2 < · · · < nk such that

M ⊂ G ∪ F c
n1

∪ · · · ∪ F c
nk
.

It follows that Fj ⊂ G for all j except possibly for j ≤ nk. This is because of nesting: if
ℓ > nk ≥ j then Fℓ ⊂ Fnk

⊂ Fj so that Fℓ ∩ F c
j = ∅ for all j = 1, . . . , nk, thus Fℓ ⊂ G.

Another argument may be given using the sequential characterization of compactness. If the
conclusion fails, there is a subsequence xnk

∈ Fnk
\G for k = 1, 2, . . . ,∞. By compactness

there is a convergent subsequence of (xnk
) converging to x ∈ M . Since (xnk

) ⊂ Gc, by
the sequential characterization of closedness, x ∈ Gc. On the other hand, by nesting, for
nj ≥ m we have xnj ∈ Fnj ⊂ Fm so the characterization of closedness, we have x ∈ Fm for
all m. Thus x ∈ I ⊂ G, a contradiction,

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement: Suppose the map on metric spaces f : (M,d) → (N, ρ) is continuous. If
f(M) is connected then M is connected.

False. Let f : R → R be constant and M ⊂ R be M = (−2,−1) ∪ (1, 2).
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(b) Statement: Every metric space is homeomorphic to one of finite diameter.

True. Any metric space (M,d) is homeomorphic to the same space (M, d̃) with
bounded metric d̃. For example, putting

d̃(x, y) =
d(x, y)

1 + d(x, y)

works because the identity map ι : (M,d) → (M, d̃) and it inverse ι−1 are continuous.

(c) Statement: The set A = {(x1, x2, . . .) ∈ ℓ2 : |xi| ≤ 1 for all i.} is compact in ℓ2.

False. The set contains the sequence (en) where en = (0, . . . , 0, 1, 0, . . .) wth the “1”
in the n-th slot. Now ∥ej − ek∥2 =

√
2 if j ̸= k, so that any ball with radius r <

√
2/2

can contain at most one of the members of the sequence. In particular, the sequence,
and hence A cannot be covered by finitely many balls of radius r <

√
2/2. A is not

totally bounded so not compact.

4. For x ∈ R, let T : C([0, 1]) → C([0, 1]) be defined by T [y](t) = t+

∫ t

0

s f(s) ds.

Show that T satisfies the hypotheses of the Contraction Mapping Theorem. Show that the
fixed point is a solution to the differential equation f ′(t) = tf(t) + 1.

Let X = C([0, 1]) and ∥ • ∥ denote the sup-norm on [0, 1] making (X, ∥ • ∥) a complete
normed linear space (Banach Space). To show that T : X → X, for y ∈ X we have t y(t) is
a continuous function on [0, 1] so its indefinite integral is continuous. Adding the continuous
function t yields the transformation

T [y](t) = t+

∫ t

0

s f(s) ds

which maps y to a continuous function T [y]. To show that T satisfies the contraction
mapping hypotheses, we must also show that T is a contraction on X. Fix t ∈ [0, 1] and
pick x, y ∈ X. Estimating∣∣T [x](t)− T [y](t)

∣∣ = ∣∣∣∣t+ ∫ t

0

s x(s) ds− t−
∫ t

0

s y(s) ds

∣∣∣∣
=

∣∣∣∣∫ t

0

s
(
x(s)− y(s)

)
ds

∣∣∣∣
≤

∫ t

0

s |x(s)− y(s)| ds

≤
∫ t

0

s ∥x− y∥ ds

=
t2

2
∥x− y∥

≤ 1

2
∥x− y∥.

Taking supremum on the left side over t ∈ [0, 1] yields

∥T [x]− T [y]∥ ≤ 1

2
∥x− y∥,

showing that T is a contraction with constant 1
2 .

By the Contraction Mapping Theorem, there is a unique z ∈ X such that z = T [z]. In
other words

z(t) = t+

∫ t

0

s z(s) ds.
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Since t z(t) is continuous, by the Fundamental Theorem of Calculus, the indefinite integral
is continuously differentiable, as is t, so that their sum may be differentiated to yield the
solution of the desired ODE

dz

dt
(t) = 1 + t z(t).

Evaluating at zero, we also have the initial value z(0) = 0.

5. Show ℓ∞ is complete.

Recall that ℓ∞ = {f : N → R : ∥f∥ < ∞} is the set of bounded sequences of reals, where
the norm is the sup norm ∥f∥ = sup{|f(k)| : k ∈ N}. To show ℓ∞ is complete it has to be
shown that every Cauchy Sequence (xn) in ℓ∞ converges in ℓ∞. Choose a Cauchy Sequence
(xn) in ℓ∞.

First we construct a candidate for the limit. Fix any k ∈ N. We observe that since (xn) is
Cauchy in ℓ∞, for every ε > 0 there is an N ∈ N such that

∥xn − xm∥ < ε whenever m,n ≥ N .

Hence
|xn(k)− xm(k)| ≤ ∥xn − xm∥ < ε whenever m,n ≥ N .

Thus the real sequence (xn(k)) is a Cauchy Sequence. Since the reals are complete, there
is a real limit

x(k) = lim
n→∞

xn(k).

x is our candidate for the limit of (xn).

Second, we show that x ∈ ℓ∞. We know that a Cauchy sequence is bounded. Thus there is
M < ∞ such that ∥xn∥ ≤ M for all n. Thus for each k, |xn(k)| ≤ ∥xn∥ ≤ M . Passing the
inequality to the limit, for each k,

|x(k)| = lim
n→∞

|xn(k)| ≤ M

so x is a bounded sequence or x ∈ ℓ∞. Taking sup over k implies ∥x∥ ≤ M .

Third, we must show that xn → x in ℓ∞. Use the fact that (xn) is a Cauchy sequence. We
have for every ε > 0 there is an N ∈ N such that

∥xn − xm∥ < ε whenever m,n ≥ N .

For any k ∈ N,

|xn(k)− xm(k)| ≤ ∥xn − xm∥ < ε whenever m,n ≥ N .

Taking the limit n → ∞ implies

|x(k)− xm(k)| = lim
n→∞

|xn(k)− xm(k)| ≤ ε whenever m ≥ N .

Taking sup over k implies

∥x− xm∥ ≤ ε whenever m ≥ N ,

which is the statement that xm → x in ℓ∞.
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