Math 5210 § 2.	Second Midterm Exam	Name: Solutions
Treibergs		Feb. 26, 2025

1. Let (M,d) be a metric space and let $E, F \subset M$. Define: E is open. Define F is closed. Define $x \in M$ is a limit point of F. Prove directly that F is closed if and only if it contains its limit points.

E is open if for every $x \in E$ there is r > 0 so that $B_r(x) \subset E$, where $B_r(x) = \{y \in M : d(x, y) < r\}$ is the open ball of radius *r* about *z*. *F* is closed if the complement $F^c = M \setminus F$ is open.

 $x \in M$ is a limit point of F if for every $\varepsilon > 0$ we have $(B_{\varepsilon}(x) \setminus \{x\}) \cap F \neq \emptyset$.

Assume that F is closed. Arguing by contrapositive, we show if x is not in F then it is not a limit point of F. Since $x \in F^c$ is open, there is an r > 0 such that $B_r(c) \subset F^c$. Now if $\varepsilon < r$ then $B_{\varepsilon}(x) \setminus \{x\} \subset B_r(x) \subset F^c$ so $(B_{\varepsilon}(x) \setminus \{x\}) \cap F = \emptyset$ so x is not a limit point of F. Now, assume that F contains its limit points. Arguing by contrapositive, we show if F is not closed there is a limit point of F not in F. Thus F^c is not open: there is $x \in F^c$ such that for all $\varepsilon > 0$ the ball $B_{\varepsilon}(x) \cap F \neq \emptyset$. As $x \notin F$ this says x is a limit point of F which is not in F.

2. Let (M, d) be a metric space. Define: M is compact. Complete the statement of a theorem you'll use to answer the question.

Theorem. (M, d) is a compact metric space if and only if ...

Let (M,d) be a compact metric space. Suppose that (F_n) is a decreasing sequence of nonempty closed sets in M, and that $\bigcap_{n=1}^{\infty} F_n$ is contained in an open set G. Show that $F_n \subset G$ for all but finitely many n.

Our author defines (M, d) to be compact if it is complete and totally bounded.

Theorem. (M, d) is a compact metric space if and only if every open cover has a finite subcover. Namely, if $\{G_{\alpha}\}_{\alpha \in A}$ is a collection of open sets such that $M \subset \bigcup_{\alpha \in A} G_{\alpha}$ then there are finitely many indices $\{\alpha_1, \ldots, \alpha_k\}$ such that $M \subset G_{\alpha_1} \cup \cdots \cup G_{\alpha_k}$.

To prove the assertion, let $\mathcal{I} = \bigcap_{n=1}^{\infty} F_n$ be the intersection. Consider the collection of open sets $\{G\} \cup \{F_n^c : n \in \mathbb{N}\}$. This collection covers M. If $x \in \mathcal{I}$ then $x \in G$. If $x \notin \mathcal{I}$ then there is n_0 so that $x \notin F_{n_0}$, in other words $x \in F_{n_0}^c$.

By the Theorem. there is a finite subcollection $n_1 < n_2 < \cdots < n_k$ such that

$$M \subset G \cup F_{n_1}^c \cup \cdots \cup F_{n_k}^c.$$

It follows that $F_j \subset G$ for all j except possibly for $j \leq n_k$. This is because of nesting: if $\ell > n_k \geq j$ then $F_\ell \subset F_{n_k} \subset F_j$ so that $F_\ell \cap F_j^c = \emptyset$ for all $j = 1, \ldots, n_k$, thus $F_\ell \subset G$.

Another argument may be given using the sequential characterization of compactness. If the conclusion fails, there is a subsequence $x_{n_k} \in F_{n_k} \setminus G$ for $k = 1, 2, ..., \infty$. By compactness there is a convergent subsequence of (x_{n_k}) converging to $x \in M$. Since $(x_{n_k}) \subset G^c$, by the sequential characterization of closedness, $x \in G^c$. On the other hand, by nesting, for $n_j \geq m$ we have $x_{n_j} \in F_{n_j} \subset F_m$ so the characterization of closedness, we have $x \in F_m$ for all m. Thus $x \in \mathcal{I} \subset G$, a contradiction,

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) STATEMENT: Suppose the map on metric spaces $f: (M, d) \to (N, \rho)$ is continuous. If f(M) is connected then M is connected.

FALSE. Let $f : \mathbf{R} \to \mathbf{R}$ be constant and $M \subset \mathbf{R}$ be $M = (-2, -1) \cup (1, 2)$.

(b) STATEMENT: Every metric space is homeomorphic to one of finite diameter. TRUE. Any metric space (M, d) is homeomorphic to the same space (M, \tilde{d}) with bounded metric \tilde{d} . For example, putting

$$\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

works because the identity map $\iota: (M, d) \to (M, \tilde{d})$ and it inverse ι^{-1} are continuous.

- (c) STATEMENT: The set $A = \{(x_1, x_2, \ldots) \in \ell_2 : |x_i| \leq 1 \text{ for all } i.\}$ is compact in ℓ_2 . FALSE. The set contains the sequence (e_n) where $e_n = (0, \ldots, 0, 1, 0, \ldots)$ with the "1" in the *n*-th slot. Now $||e_j - e_k||_2 = \sqrt{2}$ if $j \neq k$, so that any ball with radius $r < \sqrt{2}/2$ can contain at most one of the members of the sequence. In particular, the sequence, and hence A cannot be covered by finitely many balls of radius $r < \sqrt{2}/2$. A is not totally bounded so not compact.
- 4. For $x \in \mathbf{R}$, let $T : \mathcal{C}([0,1]) \to \mathcal{C}([0,1])$ be defined by $T[y](t) = t + \int_0^t s f(s) \, ds$.

Show that T satisfies the hypotheses of the Contraction Mapping Theorem. Show that the fixed point is a solution to the differential equation f'(t) = tf(t) + 1.

Let $X = \mathcal{C}([0,1])$ and $\| \bullet \|$ denote the sup-norm on [0,1] making $(X, \| \bullet \|)$ a complete normed linear space (Banach Space). To show that $T: X \to X$, for $y \in X$ we have ty(t) is a continuous function on [0,1] so its indefinite integral is continuous. Adding the continuous function t yields the transformation

$$T[y](t) = t + \int_0^t s f(s) \, ds$$

which maps y to a continuous function T[y]. To show that T satisfies the contraction mapping hypotheses, we must also show that T is a contraction on X. Fix $t \in [0, 1]$ and pick $x, y \in X$. Estimating

$$\begin{aligned} \left| T[x](t) - T[y](t) \right| &= \left| t + \int_0^t s \, x(s) \, ds - t - \int_0^t s \, y(s) \, ds \right| \\ &= \left| \int_0^t s \, \left(x(s) - y(s) \right) \, ds \right| \\ &\leq \int_0^t s \, \left| x(s) - y(s) \right| \, ds \\ &\leq \int_0^t s \, \left\| x - y \right\| \, ds \\ &= \frac{t^2}{2} \| x - y \| \\ &\leq \frac{1}{2} \| x - y \|. \end{aligned}$$

Taking supremum on the left side over $t \in [0, 1]$ yields

$$||T[x] - T[y]|| \le \frac{1}{2}||x - y||,$$

showing that T is a contraction with constant $\frac{1}{2}$.

By the Contraction Mapping Theorem, there is a unique $z \in X$ such that z = T[z]. In other words

$$z(t) = t + \int_0^t s \, z(s) \, ds.$$

Since t z(t) is continuous, by the Fundamental Theorem of Calculus, the indefinite integral is continuously differentiable, as is t, so that their sum may be differentiated to yield the solution of the desired ODE

$$\frac{dz}{dt}(t) = 1 + t \, z(t).$$

Evaluating at zero, we also have the initial value z(0) = 0.

5. Show ℓ_{∞} is complete.

Recall that $\ell_{\infty} = \{f : \mathbb{N} \to \mathbf{R} : ||f|| < \infty\}$ is the set of bounded sequences of reals, where the norm is the sup norm $||f|| = \sup\{|f(k)| : k \in \mathbb{N}\}$. To show ℓ_{∞} is complete it has to be shown that every Cauchy Sequence (x_n) in ℓ_{∞} converges in ℓ_{∞} . Choose a Cauchy Sequence (x_n) in ℓ_{∞} .

First we construct a candidate for the limit. Fix any $k \in \mathbb{N}$. We observe that since (x_n) is Cauchy in ℓ_{∞} , for every $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$||x_n - x_m|| < \varepsilon$$
 whenever $m, n \ge N$.

Hence

$$|x_n(k) - x_m(k)| \le ||x_n - x_m|| < \varepsilon$$
 whenever $m, n \ge N$.

Thus the real sequence $(x_n(k))$ is a Cauchy Sequence. Since the reals are complete, there is a real limit

$$x(k) = \lim_{n \to \infty} x_n(k).$$

x is our candidate for the limit of (x_n) .

Second, we show that $x \in \ell_{\infty}$. We know that a Cauchy sequence is bounded. Thus there is $M < \infty$ such that $||x_n|| \le M$ for all n. Thus for each k, $|x_n(k)| \le ||x_n|| \le M$. Passing the inequality to the limit, for each k,

$$|x(k)| = \lim_{n \to \infty} |x_n(k)| \le M$$

so x is a bounded sequence or $x \in \ell_{\infty}$. Taking sup over k implies $||x|| \leq M$.

Third, we must show that $x_n \to x$ in ℓ_{∞} . Use the fact that (x_n) is a Cauchy sequence. We have for every $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$||x_n - x_m|| < \varepsilon$$
 whenever $m, n \ge N$.

For any $k \in \mathbb{N}$,

$$|x_n(k) - x_m(k)| \le ||x_n - x_m|| < \varepsilon$$
 whenever $m, n \ge N$.

Taking the limit $n \to \infty$ implies

$$|x(k) - x_m(k)| = \lim_{n \to \infty} |x_n(k) - x_m(k)| \le \varepsilon \qquad \text{whenever } m \ge N.$$

Taking sup over k implies

$$||x - x_m|| \le \varepsilon$$
 whenever $m \ge N$,

which is the statement that $x_m \to x$ in ℓ_{∞} .