Math 5410 § 1. Second Midterm Exam Name: Golutions

Treibergs Oct. 21, 2020
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Second method is to compute the power series. Indeed,

01 0
A% = o0 of, A3 =0,
0 0O

so the exponential series terminates at the quadratic term, yielding
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2. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a)

STATEMENT: The set of matrices A that don’t have w as an eigenvalue are open and
dense in the set of real matrices.

TRUE. Let U be the set of real n X n matrices whose eigenvalues all differ from .
The key fact is that the eigenvalues depend continuously on the matrix. A slick way
to say that all eigenvalues are not 7 is

FA) =T a(4) — =) £0.
k=1

Thus U is open because it is the preimage under a continuous function of an open set,
namely,

U = 1 ((—00,0) U (0,0)).

Equivalently one could say since \;(A) is continuous, for any A € U, all eigenvalues are
some positive distance € away from 7, so for sufficiently small § > 0, if any matrix B
satisfies |B — A| < 6 then all |\;(A) — X\i(B)] < € so all \;(B) # w. Thus every matrix
in U has a d-neighborhood of matrices entirely contained in U. Thus U is open.

To see that U is dense, one has to prove that every matrix A € L(R™) can be arbitrarily
closely approximated by a matrix in U. But one can choose a sequence ¢; | 0 decreasing
to zero and consider the approximating matrices A; = A + t;I whose eigenvalues are
Ai +t; (why?) For all but finitely many ¢, the eigenvalues of A; are not m so A; € U
and |A; — Al — 0 as ¢ — co. Thus U is dense.

STATEMENT: Let a,b € N be positive integers. Then the solution (z(t),y(t)) of the
harmonic oscillator equations & + ax = 0, § + by = 0 s periodic.

FALSE. Writing in polar coordinates = = r1(t)cosb(t), £ = ri(t)sinby(t), y =
7o (t) cos Ba(t), § = ro(t)sinba(t), the system reduces to 6; = —y/a and 6y = —/b.
The solutions of this system of oscillators is periodic if and only if the trajectory of
(61(t),02(t)) closes up in the two torus (the square [0,27) x [0,27) C R? with sides
identified). This happens if and only if the ratio of angular frequencies \/B/ Va is ra-
tional. However, if one chooses a = 4 and b = 5 then this ratio is irrational and the
solution is not periodic. The x(¢) and y(t) are “out of sync.”



(¢) STATEMENT: If f : R — R is a continuously differentiable, then the IVP & = f(z)
and z(0) = 0 has a solution x(t) defined fort € R.

FALSE. The solution of & = f(x) and z(0) = 0 may not exist for all of t € R. For
example f(x) = 1 + 22 is continuosly differentiable but the solution of the IVP is
x(t) = tant which exists only for —5 <t < 7, and tends to infinity as ¢t — +7.

. Solve the initial value problem

We have a real canonical form with eigenvalues A = 1 4 2¢ with

1 2 cos2t sin2t 0
-2 1 —sin2t cos2t 2¢t

Using the variation of constants formula,

X(t) =e? (X(O) + / t e ¥ f(s) ds>

0
cos2t sin2t 3 t cos2s —sin2s 0
= + / e’ ds
—sin2t cos2t 5 0 sin2s  cos2s 2e®
cos2t sin2t 3 t | —2sin2s
=¢t + / ds
—sin2t cos2t 5 0 2cos2s
cos2t sin2t 3 cos2t —1
= +
—sin2t cos2t 5 sin 2t
; 1+ 2cos2t + 5sin 2t
=e
5cos 2t — 2sin 2s




4. Suppose zop € R and x : R — R is a continuous function that satisfies the equation.

x(t) =xo + /0 sin(s + z(s)) ds.

Why is x(t) continuously differentiable? State the initial value problem satisfied by x(t).
Estimate the magnitude of x(t) as a function of t. For a continuous function y : R — R,
let

Jy](t) = xo + /0 sin(s + y(s)) ds.

Let yo(t) = xo and yn41(t) = J[ya](t). Is {yn(t)} convergent for t € R? Is it convergent
ontel0,3]? Hint: |sinz — sinw| < |z — w|.

Since we assume that z(t) is continuous, sin(s+ z(s)) is a continuous function of s. So z(t)
is the definite integral of a continuous function, thus continuously differentiable. Differen-
tiating using the Fundamental Theorem of Calculus, and evaluating at ¢ = 0,

z(t) = sin(t + z(t)),
x(0) = o.
The estmate is the same one used to show that the solution of the integral equation stays

inside a rectangle. Namely, because |sin(s + x(s))| < 1 for any z(¢) and s, we have for any
t>0,

lz(t)| = xo—i—/o sin(s + x(s)) ds

¢
< |xo] +/ |sin(s + z(s))| ds
0

t
< \x0|+/ 1ds
0

< |zo| +t.

We get similarly |z(¢)| < |zo| — ¢ for any ¢ < 0. Putting these together, |z(t)| < |zo| + |t
for all t € R.

The Picard Sequence yo(t) = xg and y,11(t) = J[y,](t) converges if we can show the

sequence {y,(t)} is a Uniformly Cauchy Sequence on R or on [0, 3]. This will follow if we
can show [|[yn+1(t) — Yn(t)llo < 3)lyn — yn—-1llo for n > 1 in the continuous functions C(R)
or in C([0, 1]). Recall that | f|lo = sup{|f(¢)| : t € domain.}. For the first step, we have

ly1(t) — yo(t)| = = |1 —cos(t+yo)| <2

¢
/ sin(s + yo) ds
0

for all t € R. Using the hint |sin z —sinw| < |z —w|, that sin(x) is 1-Lipschitz, we estimate



the case ¢ > 0 for simplicity
t t
a0 =m0 = | [ sints o)) ds = [ sints s ()
0 0
t
< / [sin(s + yn(s)) — sin(s + yn—1(s))| ds
0
t
< [ s unls) =5 = pna(s)] ds
0
t
— [ 1509~ vumss)] ds
0

t
s/uw—%Amw
0

= tyn — Yn-1llo-
This is not a bounded quantity if ¢ is allowed to be unbounded as for ¢ € R. Thus this
estimate fails in R case. However, if 0 <t < % we get
1
|Zn41(t) — zn(t)] < 5”1‘" —Zn-1llo

Taking sup over [0, 1] we get

1
Hxn—i-l - anO S 5”1:71 - mn—l”O

in C([0,1]). Thus, with a little work we can deduce that {z,,} is a Cauchy Sequence in
C([o, %]) and so converges to a solution of the integral equation.

5. Find the first few Picard iterates of the system. Show that they converge to a solution of

the IVP.

ixinil z(0)\ (1

dt\y) ~\y) \&/)’ y(0)) \1/)°
First find the solution of the IVP. The first equation is independent of the second.

=1, z(0) = 1.
Integrating, its solution is x(¢) = 1 +¢. Then the second equation becomes
y=z=1+t  y0)=1

. . - 2
Its solution is y(t) = 1+t + 5.

Let’s do Picard Iteration. It can start with any arbitrary continuous Zy € C([0, 3]), so we
choose Zo(t) = (3).

()

- e () (o (22
Zz(t):G>+/0t nas= (1) [ (1) (1+1t++t2>
2= (1)+ [ Fz :G)+/o L (1+1t++t*2)

The sequence stabilizes Z5(t) = Z3(t) = Z4(t) = --- and has converged in two steps to the
solution of the system.



