1. Consider the initial-boundary value problem on an interval with $k > 0$ constant.

(PDE)
$$
u_t = ku_{xx}
$$
, for $0 < x < \frac{\pi}{3}$ and $0 < t$;
\n(BC) $u(0, t) = 0$,
\n $u(\frac{\pi}{3}, t) = 0$, for $0 < t$;
\n(IC) $u(x, 0) = \varphi(x)$, for $0 < x < \frac{\pi}{3}$.

Separate variables and deduce an eigenvalue problem for the x-part of the solution. Determine the eigenvalues and eigenfunctions. (You may assume eigenvalues are positive.) Solve the t-part of the solution and find the general solution as a series.

Assuming $u(t, x) = T(t)X(x)$, the separation of variables leads to

$$
T'(t)X(x) = kT(t)X''(x)
$$

so

$$
\frac{T'}{kT} = \frac{X''}{X} = -\lambda
$$

for some constant λ . The BC's imply this eigenvalue problem for X has Dirichlet conditions. The eigenvalue problem becomes

$$
X'' + \lambda X = 0
$$
, $X(0) = 0$, $X(\frac{\pi}{3}) = 0$

We are told λ is positive. But this is easy to see because these are symmetric BC's so the eigenvalue is real, nonnegative. If $\lambda = 0$ then $X'' = 0$ so $X = A + Bx$. The boundary conditions give $0 = X(0) = A$ and $0 = X(\frac{\pi}{3}) = 0 + B\frac{\pi}{3}$ so $B = 0$ also, the trivial solution. So $\lambda = 0$ is ruled out leaving $\lambda > 0$.

Putting $\lambda = \beta^2$ where $\beta > 0$ gives solutions

$$
X(x) = A\cos\beta x + B\sin\beta x
$$

Boundary conditions $0 = X(0) = A$ and $0 = X(\frac{\pi}{3}) = 0 + B\frac{\pi}{3}$ imply $B = 0$ or

$$
\beta_n = 3n, \qquad n = 1, 2, 3, \dots
$$

The eigenfunctions are thus

$$
X_n(x) = \sin 3nx
$$
, $n = 1, 2, 3, ...$

The corresponding time equation is

$$
T'_n + k\lambda_n T_n = 0, \qquad n = 1, 2, 3, \dots
$$

whose general solution is

$$
T_n(t) = A_n e^{-9kn^2t}
$$

where A_n is constant. The general solution is thus

$$
u(t,x) = \sum_{n=1}^{\infty} A_n e^{-9kn^2t} \sin 3nx.
$$

The coefficients satisfy

$$
\varphi(x) = u(x,0) = \sum_{n=1}^{\infty} A_n \sin 3nx
$$

so A_n is the sine series coefficient, given by the formula

$$
A_n = \frac{2}{\ell} \int_0^{\ell} \varphi(x) \sin\left(\frac{n\pi x}{\ell}\right) dx = \frac{6}{\pi} \int_0^{\frac{\pi}{3}} \varphi(x) \sin 3nx \, dx.
$$

2. Consider the initial-boundary value problem.

(PDE)

\n
$$
u_{tt} = c^2 u_{xx}, \qquad \text{for } 0 < x < \pi \text{ and } 0 < t;
$$
\n(BC)

\n
$$
u_x(0, t) = 0, \qquad \text{for } 0 < t;
$$
\n(IC)

\n
$$
u(x, 0) = 0, \qquad \text{for } 0 < t;
$$
\n
$$
u_t(x, 0) = \cos \frac{5}{2}x, \qquad \text{for } 0 < x < \pi.
$$

All solutions of the eigenvalue problem

$$
X'' + \lambda X = 0,
$$
 $X'(0) = 0,$ $X(\pi) = 0$

are given by

$$
X_n(x) = \cos\left(n + \frac{1}{2}\right)x
$$
, $n = 0, 1, 2, 3,$

Find the eigenvalues. Find the general solution as a series. Find the particular solution. Inserting the eigenfunction X_n into the PDE

$$
-\left(n+\frac{1}{2}\right)^2\cos\left(n+\frac{1}{2}\right)x+\lambda_n\cos\left(n+\frac{1}{2}\right)x
$$

implies

$$
\lambda_n = \left(n + \frac{1}{2}\right)^2, \quad n = 0, 1, 2, 3, \dots
$$

Assuming $u(t, x) = T(t)X(x)$, the separation of variables leads to

$$
\frac{T''}{c^2T} = \frac{X''}{X} = -\lambda
$$

for some constant given as positive $\lambda = \beta^2$ where $\beta > 0$. The BC's imply this eigenvalue problem for X has mixed BC Neumann on the left and Dirichlet on the right BC's. You were given the eigenfunctions $X_n(x)$. The corresponding time equation is

$$
T''_n + c^2 \lambda_n T_n = 0, \qquad n = 0, 1, 2, 3, \dots
$$

whose general solution is

$$
T_n(t) = A_n \cos\left(n + \frac{1}{2}\right)ct + B_n \sin\left(n + \frac{1}{2}\right)ct
$$

where A_n and B_N are constant. The general solution is thus

$$
u(t,x) = \sum_{n=1}^{\infty} \left\{ A_n \cos\left(n + \frac{1}{2}\right) ct + B_n \sin\left(n + \frac{1}{2}\right) ct \right\} \cos\left(n + \frac{1}{2}\right) x
$$

We have

$$
0 = u(x, 0) = \sum_{n=1}^{\infty} A_n \cos \left(n + \frac{1}{2} \right) x
$$

so $A_n = 0$ for all *n*. Also

$$
\cos \frac{5}{2}x = u_t(x, 0) = \sum_{n=1}^{\infty} B_n c \left(n + \frac{1}{2} \right) \cos \left(n + \frac{1}{2} \right) x
$$

so

$$
B_2 = \frac{2}{5c}
$$

and the rest of the $B_n = 0$. Thus the particular solution is

$$
u(t,x) = \frac{2}{5c} \sin\left(\frac{5}{2}ct\right) \cos\left(\frac{5}{2}x\right)
$$

.

- 3. Consider the functions $f_n(x) = x^n x^{n+1}$. The infinte sum $S(x) = \sum_{n=0}^{\infty}$ $n=1$ f_n is known to converges pointwise on the interval [0, 1].
	- (a) Find $S(x)$ for $0 \le x \le 1$. [Be careful!] The sum telescopes so

$$
S_n = (x^1 - x^2) + (x^2 + x^3) + \cdots + (x^N - x^{N+1}) = x - x^{N+1}
$$

If $x = 1$ then $S_N(x) = 0$ for all N. On the other hand, for $0 \le x < 1$, $S_N(x) =$ $x - x^{N+1} \to x$ as $N \to \infty$. Summarizing, for $0 \le x \le 1$,

$$
S(x) = \lim_{N \to \infty} S_N(x) = \begin{cases} x, & \text{if } 0 \le x < 1; \\ 0, & \text{if } x = 1. \end{cases}
$$

(b) Define: $\sum_{n=1}^{\infty}$ $n=1$ f_n converges uniformly. Does the series converge uniformly on $[0,1]$ with these $f_n\, ? \; \mathit{Why?}$ The series $\sum_{n=1}^{\infty}$ $n=1$ f_n is said to converge uniformly on [0, 1] if $\lim_{x \to 0} \quad \sup |S_N(x) - S(x)| = 0.$

$$
N \to \infty \quad 0 \le x \le 1
$$

Here the sum does not converge uniformly on [0, 1]. Even though $S_N(1) - S(1) = 0$, this is because for each N ,

$$
\sup_{0 \le x \le 1} |S_N(x) - S(x)| = \sup_{0 \le x < 1} |x - x^{N+1} - x| = 1
$$

which does not converge to zero.

(c) Define: $\sum_{n=1}^{\infty}$ $n=1$ f_n converges in the \mathcal{L}^2 -sense. Does the series converge in the \mathcal{L}^2 -sense on $[0,1]$ with these f_n ? Why? The series $\sum_{n=1}^{\infty}$ $n=1$ f_n is said to converge in the \mathcal{L}^2 -sense on [0, 1] if

$$
\lim_{N \to \infty} \int_0^1 |S_N(x) - S(x)|^2 \, dx = 0.
$$

Here the sum does converge in the \mathcal{L}^2 -sense on [0,1]. We can omit one point $|S_N(1) S(1)|^2 = 0$ of the integrand and not change the integral. For each N,

$$
\int_0^1 |S_N(x) - S(x)|^2 dx = \int_0^1 |x - x^{N+1} - x|^2 dx = \left[\frac{x^{2N+3}}{2N+3}\right]_0^1 = \frac{1}{2N+3}
$$

which converges to zero as $N \to \infty$.

4. For positive constants A, B, T let

$$
\varphi(x) = \begin{cases} 1, & \text{if } 0 \le x \le A; \\ 0, & \text{otherwise.} \end{cases} \qquad f(t, x) = \begin{cases} 1, & \text{if } 0 \le x \le B \text{ and } 0 \le t \le T; \\ 0, & \text{otherwise.} \end{cases}
$$

Consider the initial-boundary value problem on the half-line, where $k > 0$ is constant.

(PDE)

\n
$$
u_t - ku_{xx} = f(t, x), \qquad \text{for } 0 < x < \infty \text{ and } 0 < t;
$$
\n(BC)

\n
$$
u_x(0, t) = 0, \qquad \text{for } 0 < t;
$$
\n(IC)

\n
$$
u(x, 0) = \varphi(x), \qquad \text{for } 0 < x < \infty.
$$

Solve the problem. You may write your solution as an integral. Show that for all $x \geq 0$, the solution $u(x, t) \to 0$ as $t \to \infty$.

The Neumann condition at $x = 0$ tells us to find the even extension to all of $-\infty < x < \infty$ and then do Duhamel's formula using the extended data to express the solution on the halfline.

$$
\varphi_{\text{ev}}(x) = \begin{cases} 1, & \text{if } -A \le x \le A; \\ 0, & \text{otherwise.} \end{cases} \qquad f_{\text{ev}}(t,x) = \begin{cases} 1, & \text{if } -B \le x \le B \text{ and } 0 \le t \le T; \\ 0, & \text{otherwise.} \end{cases}
$$

Then

$$
u(t,x) = \int_{-\infty}^{\infty} S(t,x-y)\varphi_{\text{ev}}(y) \, dy + \int_{0}^{t} \int_{-\infty}^{\infty} S(t-s,x-y)f_{\text{ev}}(s,y) \, dy \, ds +
$$

where

$$
S(t, z) = \frac{1}{\sqrt{4k\pi t}} \exp\left(-\frac{z^2}{4kt}\right).
$$

So, if $t > T$ then inserting φ_{ev} and F_{ev} ,

$$
u(t,x) = \int_{-A}^{A} \frac{1}{\sqrt{4k\pi t}} \exp\left(-\frac{(x-y)^2}{4kt}\right) dy + \int_{0}^{T} \int_{-B}^{B} \frac{1}{\sqrt{4k\pi(t-s)}} \exp\left(-\frac{(x-y)^2}{4k(t-s)}\right) dy ds
$$

The integrands are everywhere positive so $u(t, x) \geq 0$. Observing that for $0 \leq s \leq T < t$ we have

$$
\exp\left(-\frac{(x-y)^2}{4kt}\right)\le 1, \qquad \exp\left(-\frac{(x-y)^2}{4k(t-s)}\right)\le 1, \qquad \frac{1}{\sqrt{4k\pi(t-s)}}\le \frac{1}{\sqrt{4k\pi(t-T)}}
$$

It follows that for $t > T$,

$$
0 \le u(t,x) \le \frac{2A}{\sqrt{4k\pi t}} + \frac{2BT}{\sqrt{4k\pi(t-T)}} \to 0, \quad \text{as } t \to \infty.
$$

5. Consider the eigenvalue problem on $1 \le x \le 2$

$$
X'' + \lambda X = 0, \qquad X'(1) = X(1), \qquad X'(2) = -X(2).
$$

Show that the eigenvalues are real and positive.

Let X be a possibly complex eigenfunction with possibly complex eigenvalue λ . Multiplying by the complex conjugate, integrating by parts and using the boundary condition yields

$$
\lambda \int_{1}^{2} X \bar{X} dx = -\int_{1}^{2} X'' \bar{X} dx
$$

= $\int_{1}^{2} X' \bar{X}' dx - \left[X' \bar{X} \right]_{1}^{2}$
= $\int_{1}^{2} X' \bar{X}' dx - X'(2) \bar{X}(2) + X'(1) \bar{X}(1)$
= $\int_{1}^{2} X' \bar{X}' dx + X(2) \bar{X}(2) + X(1) \bar{X}(1)$
 $\lambda \int_{1}^{2} |X|^{2} dx = \int_{1}^{2} |X'|^{2} dx + |X(2)|^{2} + |X(1)|^{2}$

Since X is nontrivial, the integral of $|X|^2$ is positive. Similarly, the terms on the right are nonnegative, hence λ is real, nonnegative.

If $\lambda = 0$ then $X'' = 0$ so $X = A + Bx$ and $X' = B$. The boundary conditions give

$$
B = X'(1) = A + B
$$

$$
B = X'(2) = A + 2B
$$

so $A = B = 0$, the trivial solution. So $\lambda = 0$ is ruled out leaving $\lambda > 0$.