
Math 5440 § 1.
Treibergs

Final Exam Name: Practice
Dec. 7, 2016

Problems from the last third of the class. Half of the final exam will be on problems since the
Final The other half will be comprehensive.

1. Solve

(PDE) utt − c2uxx = et sin 5x, for 0 < x < π, 0 < t;

(IC) u(x, 0) = 0,

ut(x, 0) = sin 3x, for 0 < x < π;

(BC) u(0, t) = 0,

u(π, t) = 0, for 0 < t.

Let us express the solution as a sine series with coefficients depending on time.

u(t, x) =

∞∑
n=1

un(t) sinnx

where

un(t) =
2

π

∫ π

0

u(t, x) sinnx dx

The time derivatives

ut(x, t) =

∞∑
n=1

vn(t) sinnx

utt(x, t) =

∞∑
n=1

wn(t) sinnx

where

vn(t) =
2

π

∫ π

0

ut(t, x) sinnx dx

=
2

π

∂

∂t

∫ π

0

u(t, x) sinnx dx

= u′n(t)

wn(t) =
2

π

∫ π

0

utt(t, x) sinnx dx

=
2

π

∂2

∂t2

∫ π

0

u(t, x) sinnx dx

= u′′n(t)

assuming that the first and second derivatives ut(t, x) and utt(t, x) is continuous on [0, π]×
[0,∞). The spatial derivative has the expansion

uxx(x, t) =

∞∑
n=1

yn(t) sinnx
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where

yn(t) =
2

π

∫ π

0

uxx(t, x) sinnx dx

= −2n

π

∫ π

0

ux(t, x) cosnx dx+
2

π

[
ux(t, x) sinnx

]π
0

= −2n2

π

∫ π

0

u(t, x) sinnx dx− 2n

π

[
u(t, x) cosnx

]π
0

= −n2un(t)

using the fact that both sinnx and u(t, x) both vanish at x = 0 and x = π. The source
term is already a Fourier sine series

f(t, x) = et sin 5x =

∞∑
n=1

fn(t) sinnx

where f5(t) = et and fn(t) = 0 for other n. Expanding the PDE we find for n = 1, 2, 3, . . .,

u′′n(t) + c2n2un(t) = fn(t)

The initial conditions say

0 = u(x, 0) =

∞∑
n=1

un(0) sinnx

sin 3x = ut(x, 0) =

∞∑
n=1

u′n(0) sinnx

It follows that un(0) = 0 for all n and u′3(0) = 1 and the rest u′n(0) = 0. It follows that
n = 3 and n = 5 are special cases and the rest are handled the same.

u′′3 + 9c2u3 = 0, u3(0) = 0, u′3(0) = 1.

Hence the general solution is

u3(t) = A3 cos 3ct+B3 sin 3ct.

The initial conditions tell us A3 = 0 and 1 = 3cB3 so

u3(t) =
1

3c
sin 3ct.

For n = 5,
u′′5 + 25c2u5 = et, u5(0) = 0, u′5(0) = 0.

Using the method of undetermined coefficients (i.e., guessing) we try a particular solution

up(t) = Cet

Plugging gives
u′′p + 25c2up = C(1 + 25c2)et = et,

so

up(t) =
1

1 + 25c2
et.
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The general solution is the particular solution plus the general solution of the homogeneous
problem

u5(t) = A5 cos 5ct+B5 sin 5ct+
1

1 + 25c2
et.

The zero initial conditions imply 0 = A5 + (1 + 25c2)−1 and 0 = 5cB5 + (1 + 25c2)−1 so

u5(t) =
5cet − 5c cos 5ct− sin 5ct

5c(1 + 25c2)
.

The remaining n satisfy

u′′n + n2c2u5 = 0, un(0) = 0, u′n(0) = 0.

so un(t) = 0. Summing all nonvanishing terms we find the solution

u(t, x) =
1

3c
sin 3ct sin 3x+

5cet − 5c cos 5ct− sin 5ct

5c(1 + 25c2)
sin 5x.

2. Find the temperature of a metal rod that is in the shape of a truncated cone whose radius is

R(x) = d(ξ + a), 0 < ξ < b

where a and b are positive constants. Assume that the rod is insulated on its sides, is
maintained at zero temperature on its ends and it has an unspecified initial temperature
distribution. (Text problem 5.6.10.)

The cross section at x = a+ ξ is a circle so the cross sectional area is

A(x) = πd2x2, a < x < ` = a+ b

We assume that the temperature depends only on x, the coordinate along the rod. Recall
the derivation of the heat equation. Let c be the specific heat, κ the heat conductivity and
ρ the density. Let H be the total heat in the rod between x0 ≤ x ≤ x1

H =

∫ x1

x0

cρA(x)u(t, x) dx

The rate of change of energy is

dH

dt
=

∫ x1

x0

cρA(x)ut(t, x) dx = flow in− flow out = A(x1)κux(t, x1)−A(x0)κux(t, x0)

Differentiating with respect to x1 yields the PDE

cρA(x)ut(t, x) =
[
A(x)κux(t, x)

]
x

or
x2ut(t, x) = k

[
x2ux(t, x)

]
x
, a < x < `

where k = κ/cρ, the heat constant.

To solve this equation, we make the change of dependent variable

u(t, x) =
v(t, x)

x
.
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The PDE becomes

ux =
vx
x
− v

x2

x2ux = xvx − v
[x2ux]x = xvxx + vx − vx = xvxx

so the PDE becomes
xvt = kxvxx

which is the standard heat equation for v(t, x). The initial condition is ϕ(x) = u(x, 0) =
v(x, 0)/x. Thus the initial-boundary value problem has been transformed to

(PDE) vt = kvxx, for a < x < `, 0 < t;

(IC) v(x, 0) = xϕ(x− a), for a < x < `;

(BC) v(a, t) = 0,

v(`, t) = 0, for 0 < t.

This is the standard problem except we have translated to a < x < ` where ` = a + b.
Separating variables v(t, x) = T (t)X(x) we get as usual

T ′(t)

kT (t)
=
X ′′(x)

X(x)
= −λ

which produces the eigenvalue problem with boundary conditions

X ′′ + λX = 0, X(a) = 0, X(`) = 0.

The solutions are the translated versions of the usual

Xn(x) = sin

(
nπ(x− a)

`− a

)
, λn =

n2π2

(`− a)2
, n = 1, 2, 3, . . . .

The time equation is the usual
T ′n + kλnTn = 0

whose solution is

Tn(t) = exp

(
− kn2π2t

(`− a)2

)
.

Thus the series solution is

v(t, x) =

∞∑
n=1

Bn exp

(
− kn2π2t

(`− a)2

)
sin

(
nπ(x− a)

`− a

)
where

Bn =
2

`− a

∫ `

a

xϕ(x− a) sin

(
nπ(x− a)

`− a

)
dx

Rewriting in terms of u(t, ξ) where ξ = x− a we find for 0 < ξ < b and 0 < t,

u(t, ξ) =
1

a+ ξ

∞∑
n=1

Bn exp

(
−kn

2π2t

b2

)
sin

(
nπξ

b

)
.
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3. The damped wave equation has a resistance term with r > 0 constant. (Text problem 5.6.13.)

(PDE) utt + rut = c2uxx, for 0 < x < `, 0 < t;

(IC) u(x, 0) = ϕ(x),

ut(x, 0) = ψ(x), for 0 < x < `;

(BC) u(0, t) = 0,

u(`, t) = Aeiωt, for 0 < t.

(a) Show that the PDE and BC are satisfied by

U(t, x) = Aeiωt
sinβx

sinβ`

where β2c2 = ω2 − irω.

(b) No matter what ϕ(x) and ψ(x) are, show that U(t, x) is the asymptotic form of u(t, x)
as t→∞.

(c) Show that you get resonance as r → 0 if ω = mπc/` for some positive integer m.

(d) Show that friction can prevent resonance from occurring.

We check BC’s are satisfied for all t > 0,

U(t, 0) = Aeiωt
sinβ · 0
sinβ`

= 0; U(t, `) = Aeiωt
sinβ · `
sinβ`

= Aeiωt.

We check the PDE is satisfied

Utt + rUt − c2Uxx = Aeiωt
sinβx

sinβ`

[
−ω2 + riω + c2β2

]
= 0.

We solve the equation using the method of shifting the data. Putting

u(t, x) = U(t, x) + v(t, x),

the function v(t, x) satisfies the initial boundary value problem with Dirichlet boundary
conditions

(PDE) vtt + rvt = c2vxx, for 0 < x < `, 0 < t;

(IC) v(x, 0) = ϕ(x)− U(x, 0),

ut(x, 0) = ψ(x)− Ut(x, 0), for 0 < x < `;

(BC) v(0, t) = 0,

v(`, t) = 0, for 0 < t.

Separating variables, inserting v(t, x) = T (t)X(x) into the PDE yields

T ′′(t) + rT ′(t)

c2T (t)
=
X ′′(x)

X(x)
= −λ

resulting in the eigenvalue problem X(x)

X ′′ + λX = 0; X(0) = X(`) = 0.

The solutions are well known by now

Xn(x) = sin
(nπx

`

)
, λn =

n2π2

`2
, n = 1, 2, 3, . . . .
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The corresponding time equation is

T ′′n + rT ′n + c2λnTn = 0

The roots of the characteristic equation

µ2
n + rµn + c2λn = 0

are

µ±n =
−r ±

√
r2 − 4c2λn
2

There are three cases yielding different general solutions. If r2 > 4c2λn then both µ±n are
negative and

Tn(t) = Ane
µ+
n t +Bne

µ−
n t

which decay as t→∞.

If r2 = 4c2λn then both µn = −r/2 and the general solution is

Tn(t) = Ane
−rt/2 +Bnte

−rt/2

which also decays to zero.

If r2 < 4c2λn then µ±n = −r/2± γni where γn = (c2λn − r2/4)1/2 > 0.

Tn(t) = e−rt/2 {An cos γnt+Bn sin γnt}

which decays and oscillates about zero.

No matter what the initial conditions are, they determine An and Bn by the formulae

Tn(0) =
2

`

∫ `

0

[ϕ(x)−U(x, 0)] sin
(nπx

`

)
dx, T ′n(0) =

2

`

∫ `

0

[ψ(x)−Ut(x, 0)] sin
(nπx

`

)
dx.

As we have shown, all Tn(t)→ 0 as t→∞ so

u(t, x) = U(t, x) + v(t, x)→ U(t, x) + 0 as t→∞.

Resonance is the phenomenon that a periodic driving input at the right frequency will cause
larger and larger vibrations. Suppose the boundary condition is driven at the suggested
frequency ω = mπc/` for some positive integer m. Then the m-th mode goes crazy. Indeed,
this is the case here. Let us suppose that A is large so that ϕ and ψ are relatively smaller,
and let us track the m-th mode due to the U part of the initial data. r2 < 4c2λm since it is
close to zero. Then γm = (c2λm − r2/4)1/2 > 0. The initial times have the formulae which
decays and oscillates about zero.

Tm(0) = Am =
2A

` sinβ`

∫ `

0

sinβx sin
(nπx

`

)
dx

T ′(0) = −r
2
Am + γmBm =

2Aωi

` sinβ`

∫ `

0

sinβx sin
(nπx

`

)
dx
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Computing∫ `

0

sinβx sin
(nπx

`

)
dx =

1

2

∫ `

0

cos
(
β − nπx

`

)
+ cos

(
β +

nπx

`

)
dx

=
1

2

[
sin
(
β − nπx

`

)
β − nπx

`

−
sin
(
β + nπx

`

)
β + nπx

`

]`
0

=
1

2

[
sin (β`− nπx)

β − nπx
`

− sin (β`+ nπx)

β + nπx
`

]
=

(−1)mβ sinβ`

β2 − n2π2

`2

=
(−1)mβc`i sinβ`

πmr

where we use ω = πmc/` and β2c2 = ω2 − irω. Thus

Am =
2Aβc(−1)mi

πmr
, Bm =

Aβc(−1)m(−ω + ri)

γmπmr

Since βc→ ω as r → 0, we see that for fixed t, the magnitude of the m-th mode

|Tm(t)Xm(x)| → ∞ as r → 0

which is resonance.

On the other hand, if a modicum of drag is present r ≥ r0 > 0, all v modes are bounded
by some C/r0 where C is a constant depending on ϕ, ψ c, ` A and ω and solutions decay
at an exponential rate to the steady periodic solution.

4. Solve the boundary value problem for Poisson’s Equation in a spherical shell in three space.
Take the limit of your answer as a→ 0 and interpret the result. (Text problem 6.1.8.)

(PDE) ∆u = 1, for a < r < b;

(BC) u = 0, for r = a;

ur = 0, for r = b.

The Laplacian in spherical coordinates (r, φ, θ) (φ is from x-axis in (x, y)-plane and θ is
angle from z axis)

∆u = urr +
2

r
ur +

1

r2

[
uθθ + (cot θ)uθ + (sec2 θ)uφφ

]
Assuming rotational symmetry, we seek functions u(r) which satisfy

u′′ +
2

r
u′ = 1, u(a) = 0, ur(b) = 0.

Multiplying by r2,
(r2u′)′ = r2u′′ + 2ru′ = r2

whose general solution is

r2u′(r) = c1 +
1

3
r3, u(r) = c2 −

c1
r

+
1

6
r2.

The initial conditions tell us

0 = b2ur(b) = c1 +
b3

3
=⇒ c1 = −b

3

3
,
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and

0 = u(a) = c2 +
b3

3a
+
a2

6
=⇒ c2 = − b

3

3a
− a2

6
so

u(r) = −b
3

3

(
1

a
− 1

r

)
+
r2 − a2

6

As a→ 0, the minimum of u which occurs at r = b tends to −∞. If the bottom didn’t drop
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Figure 1: Plots of u(r) for a = .1, .2, . . . , 1.0 and b = 1.

out of the limit, then there would be a limiting surface with a finite point singularity at
the origin in the shape of a thumb tack. However, bounded solutions of Poisson’s equation
don’t admit point singularities.

5. Solve the boundary value problem for Laplace’s equation.

(PDE) uxx + uyy = 0, for 0 < x < π, 0 < y < 1;

(BC) u(x, 0) = u(x, 1) = sin3 x, for 0 < x < π;

u(0, y) = sinπy,

u(π, y) = 0, for 0 < y < 1.

Let us solve for three simpler BVP’s, and add their solutions. The problem with data only
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on the y = 0 side is

(PDE) vxx + vyy = 0, for 0 < x < π, 0 < y < 1;

(BC) v(x, 0) = sin3 x,

v(x, 1) = 0, for 0 < x < π;

u(0, y) = u(π, y) = 0, for 0 < y < 1.

Separate variables v(x, y) = X(x)Y (y) and plug into the PDE

X ′′Y +XY ′′ = 0

so

−Y
′′(y)

Y (y)
=
X ′′(x)

X(x)
= −λ.

The x equation yields the eigenvalue problem

X ′′ + λX = 0, X(0) = X(π) = 0.

The solutions are as usual,

Xn(x) = sinnx, λn = n2, n = 1, 2, 3, . . . .

The y equation is
Y ′′n − λnYn = 0, Y (0) = 1, Y (1) = 0.

Its solution is

Yn(y) =
sinhn(1− y)

sinhn

The general solution is

v(x, y) =

∞∑
n=1

An
sinhn(1− y)

sinhn
sinnx

Note

sin3 x =

(
eix − e−ix

2i

)3

=
e3ix − 3eix + 3e−ix − e−3ix

−8i
=

3

4
sinx− 1

4
sin 3x

At y = 0,

3

4
sinx− 1

4
sin 3x = sin3 x = v(x, 0) =

∞∑
n=1

An sinnx

which means that all but two Fourier coefficients vanish and the solution is

v(x, y) =
3 sinh(1− y)

4 sinh 1
sinx− sinh 3(1− y)

4 sinh 3
sin 3x.

The transformation x′ = x and y′ = 1 − y swaps top and bottom of the rectangle. Since
harmonic functions are invariant under rigid motions, the solution with data on y = 1 is

w(x, y) =
3 sinh y

4 sinh 1
sinx− sinh 3y

4 sinh 3
sin 3x.
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Finally we consider the problem with the only nonzero data on the left.

(PDE) zxx + zyy = 0, for 0 < x < π, 0 < y < 1;

(BC) z(x, 0) = z(x, 1) = 0, for 0 < x < π;

z(0, y) = sinπy,

z(π, y) = 0, for 0 < y < 1.

This time we take the y equation for the eigenvalue problem

Y ′′ − λY = 0, Y (0) = Y (1) = 0.

The solutions are as usual,

Yn(y) = sinnπy, λn = −n2π2, n = 1, 2, 3, . . . .

The X equation is

X ′′n + λnXn = 0, X(0) = 1, X(π) = 0.

Its solution is

Xn(y) =
sinhn(π − x)

sinhnπ

The general solution is

z(x, y) =

∞∑
n=1

Bn
sinhn(π − x)

sinhnπ
sinnπy

At x = 0,

sinπy = z(0, y) =

∞∑
n=1

Bn sinnx

which means that all but one Fourier coefficients vanish and the solution is

z(x, y) =
sinh(π − x)

sinhπ
sinπy.

By superposition, we reach the solution of the original problem

u(x, y) = v(x, y) + w(x, y) + z(z, y)

=
3 sinx

4 sinh 1
(sinh(1− y) + sinh y)− sin 3x

4 sinh 3
[sinh 3(1− y) + sinh 3y] +

sinh(π − x)

sinhπ
sinπy.

6. Suppose that u is a harmonic function defined in the exterior of a piecewise smooth bounded
domain D ⊂ Rd which decays uniformly to zero at infinity. Show that

|u(x)| ≤ sup
∂D
|u(x)| = M

for all x ∈ Rd\D. Show that if u is harmonic on Rd and decays uniformly to zero at
infinity, then u(x) = 0 for all x ∈ Rd.

This is a simple application of the maximum principle. First we argue that |u(x)| ≤M for
any choice of x ∈ Rd\D. For any ε > 0, there is a large number R such that R > |x|, the
R-ball contains the domain BR(0) ⊃ D and by the convergence to zero at infinity,

|u(x)| < ε for all x ∈ Rd such that |x| = R.
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By the maximum principle applied to the annular region DR = BR(0)\D whose boundary
is ∂D ∪ ∂BR(0), we have

−M − ε ≤ inf
x∈∂DR

|u(x)| ≤ u(x) ≤ sup
x∈∂DR

|u(x)| < M + ε.

But since ε > 0 was arbitrary, we conclude |u(x)| ≤ M . The argument given allows the
possibility that M = 0.

Now suppose that u is harmonic on all of Rd and decays uniformly at infinity. Choose
x ∈ Rd. We claim that u(x) = 0. If this is not the case, then there is R > 0 such that
R > |x| and

M = sup
y∈∂BR(0)

|u(y)| < |u(x)|. (1)

Applying the maximum principle to BR(0) yields a contradiction because x ∈ BR(0)

−M ≤ inf
y∈∂BR(0)

|u(y)| ≤ u(x) ≤ sup
y∈∂BR(0)

|u(y)| ≤M

so |u(x)| ≤M contrary to (1).

7. Prove uniqueness of the Robin problem with a > 0 constant in a smooth, bounded domain
D ⊂ Rd.

(PDE) ∆u = 0, for x ∈ D;

(BC)
∂u

∂n
+ au = 0, for x ∈ ∂D.

Suppose u and v are two C2 solutions and let w = u− v. By linearity of the PDE and BC,
w also satisfies the Robin problem

(PDE) ∆w = 0, for x ∈ D;

(BC)
∂w

∂n
+ aw = 0, for x ∈ ∂D.

Consider the energy. Integrating by parts, and using the Robin condition,∫
D
|∇w|2 dV = −

∫
D
w∆w dV +

∫
∂D

w
∂w

∂n
dS

= 0−
∫
∂D

aw2 dS

≤ 0.

It follows that the energy is zero, and because ∇w ∈ C1, the integrand is identically zero. In
other words ∇w = 0 for all points in the domain, which means since domains are connected,
w = const. Hence at the boundary, ∂w∂n + aw = 0 + aw = 0, which implies that the constant
is zero w = 0 on D: the two solutions agree so solutions are unique.

8. Consider Laplace’s equation on the unit disk.

(PDE) uxx + uyy = 0, for x2 + y2 < 1;

(BC) u = x2, for x2 + y2 = 1.

Find the Rayleigh-Ritz (least energy) approximation to the solution of the form

x2 + c1(1− x2 − y2) + c2x
2(1− x2 − y2).
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The harmonic function is the energy minimizer among all functions satisfying the boundary
conditions. If we restrict to the finite family of functions

v = w0 + c1w1 + · · · cnwn
where w0 = x2 on the boundary and wj = 0 on the boundary for j ≥ 1. The energy is in
terms of L2-inner product (u, v) =

∫
D uv dA

E =
1

2
(∇v,∇v) =

1

2

n∑
j=0

n∑
k=0

cjck(∇wj ,∇wk)

where c0 = 1 for simplicity. At the minimum, for each i = 1, 2, . . . , d

0 =
∂E

∂ci
= ci(∇wi,∇wi) +

1

2

∑
k 6=i

ck(∇wi,∇wk) +
1

2

∑
j 6=i

cj(∇wj ,∇wi)

=

n∑
j=1

cj(∇wj ,∇wi) + (∇wj ,∇w0)

which is a linear system for cj . We need to find the inner products using

w0 = x2, w1 = 1− x2 − y2, w2 = x2(1− x2 − y2),

The gradients are

∇w0 = (2x, 0), ∇w1 = (−2x,−2y), ∇w2 = (2x− 4x3 − 2xy2,−2x2y)

We shall need the following tricks.

2

∫
D
x2 dA =

∫
D
x2 + y2 dA =

∫ 1

0

∫ 2π

0

r3 dθ dr =
π

2
,∫

D
x4 dA =

∫ 1

0

∫ 2π

0

r5 cos4 θ dθ dr =

∫ 1

0

r5 dr

∫ 2π

0

cos2(1− sin2 θ)θ dθ

=
1

6

∫ 2π

0

cos2 θ − 1

4
sin2 2θ dθ =

π

8∫
D
x2y2 dA =

∫ 1

0

∫ 2π

0

r5 cos2 θ sin2 θ dθ dr =
1

4

∫ 1

0

r5 dr

∫ 2π

0

sin2 2θ dθ =
π

24∫
D
x4(x2 + y2) dA =

∫ 1

0

∫ 2π

0

r7 cos4 θ dθ dr =

∫ 1

0

r7 dr

∫ 2π

0

cos2(1− sin2 θ)θ dθ =
3π

32∫
D
x2y2(x2 + y2) dA =

∫ 1

0

∫ 2π

0

r7 cos2 θ sin2 θ dθ dr =
1

4

∫
0

r7 dr

∫ 2π

0

sin2 2θ dθ =
π

32

so

(∇w0,∇w0) =

∫
D

4x2 dA = π,

(∇w0,∇w1) =

∫
D
−4x2 dA = −π,

(∇w0,∇w2) =

∫
D

4x2 − 8x4 − 4x2y2 dA = −π
6
,

(∇w1,∇w1) =

∫
D

4x2 + 4y2 dA = 2π,

(∇w1,∇w2) =

∫
D
−4x2 + 8x4 + 8x2y2 dA =

π

3
,

(∇w2,∇w2) =

∫
D

4x2 − 16x4 + 16x4(x2 + y2) + 4x2y2(x2 + y2)− 8x2y2 dA =
3π

8
.
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The coefficients satisfy(∇w1,∇w1) (∇w1,∇w2)

(∇w2,∇w1) (∇w2,∇w2)


c1
c2

 = −

(∇w0,∇w1)

(∇w0,∇w2)


or 2π

π

3
π

3

3π

8


c1
c2

 = −

−π
−π

6


whose solution is c1 = 1

2 and c2 = 0.

It happens that this is a harmonic function that satisfies the BC. One sees that

x2 +
1

2
(1− x2 − y2) =

1

2
(x2 − y2) +

1

2

which is a sum of harmonics.

9. Solve the same problem for Laplace’s equation on the unit disk. This time, use Fourier
series.

(PDE) uxx + uyy = 0, for x2 + y2 < 1;

(BC) u = x2, for x2 + y2 = 1.

In polar coordinates, u = R(r)Θ(θ) satisfies Laplace’s Equation

0 = ∆u = urr +
1

r
ur +

1

r2
uθθ = R′′Θ +

1

r
R′Θ +

1

r2
RΘ′′.

Multiply by r2/RΘ and separate.

r2R′′(r) + rR′(r)

R(r)
= −Θ′′(θ)

Θ(θ)
= λ.

The θ equation gives the eigenvalue problem

Θ′′ + λΘ = 0, Θ is 2pi-periodic.

This has the eigenfunctions

cosnθ, sinnθ, λn = n2, 0, 1, 2, 3, . . . .

The corresponding r equation is

r2R′′n + rR′n − λnRn = 0, Rn is bounded in x2 + y2 < 1.

These are Euler equations. For n ≥ 0 we guess R = rα. Inserting

0 = r2α(α− 1)rα−2 + rαrα−1 − n2rα = (α(α− 1)− λn)rα.

The characteristic equation is
α2 − n2 = 0

whose roots are ±n and general solution

Rn(r) = Cnr
n +Dnr

−n

13



so Dn must vanish to keep the solution bounded at zero. For n = 0,

0 = r2R′′0 + rR′ = r(rR′0)′

whose general solution is
R0(r) = C0 +D0 log r.

Again, Dn must vanish to keep the solution bounded at zero. The general solution is thus

u(r, θ) =
A0

2
+

∞∑
n=1

rn {An cosnθ +Bn sinnθ} .

The initial condition tells us on r = 1

x2 = cos2 θ =
1

2
(1 + cos 2θ) =

A0

2
+

∞∑
n=1

an {An cosnθ +Bn sinnθ}

so

1 = A0,
1

2
= A2, The rest of the An, Bn’s vanish.

Hence the Fourier Series solution is

u(r, θ) =
1

2
+

1

2
r2 cos(2θ)

which is the same as

u =
1

2
+

1

2
r2
[
cos2 θ − sin2 θ

]
=

1

2
− 1

2
[x2 − y2]

which agrees with the solution noticed at the end of the previous problem!

10. Suppose f(θ) is a continuoius 2π-periodic function. Show that the Poisson integral

P [f ](r, θ)→ f(θ0) as (r, θ)→ (a, θ0).

This problem is more difficult than you would see on an exam, but you should be able to
do it as, say, a homework problem. The ideas are similar to the showing the pointwise
convergence of Fourier Series. The Poisson Integral is given by,

P [f ](r, θ) =
a2 − r2

2π

∫ 2π

0

f(φ) dφ

a2 − 2ar cos(φ− θ) + r2

Choose ε > 0. By continuity, there is a δ > 0 so that

|f(φ− θ0)− f(θ0)| < ε

2
whenever |φ− θ0| < δ.

Now take θ such that |θ − θ0| < δ/2.

Observe that since the harmonic function with constant boundary values f(θ) = 1 is
u(r, θ) = 1 for all 0 ≤ r < a and θ. We could also observe that we can integrate term
by term the uniformly convergent series when r < a. In either case, we get

1 =
1

2π

∫ 2π

0

{
1 + 2

∞∑
n=1

( r
a

)n
cosn(φ− θ)

}
dφ =

1− r2

2π

∫ 2π

0

dφ

1− 2r cos(φ− θ) + r2
(2)

It follows that

P [f ](r, θ)− f(θ0) =
a2 − r2

2π

∫ 2π

0

f(φ)− f(θ0)

a2 − 2ar cos(φ− θ) + r2
dφ

14



Substitute ψ = φ− θ0, and use the fact that the integrand has period 2π

P [f ](r, θ)− f(θ0) =
a2 − r2

2π

∫ 2π−θ0

−θ0

f(ψ + θ0)− f(θ0)

a2 − 2ar cos(ψ + θ0 − θ) + r2
dψ

=
1− r2

2π

∫ π

−π

f(ψ + θ0)− f(θ0)

a2 − 2a cos(ψ + θ0 − θ) + r2
dψ

Split into three integrals

P [f ](r, θ)− f(θ0) = I + II + III

=
a2 − r2

2π

[∫ −δ
−π

f(ψ + θ0)− f(θ0)

a2 − 2a cos(ψ + θ0 − θ) + r2
dψ

+

∫ δ

−δ

f(ψ + θ0)− f(θ0)

1− 2r cos(ψ + θ0 − θ) + r2
dψ

+

∫ π

δ

f(ψ + θ0)− f(θ0)

1− 2r cos(ψ + θ0 − θ) + r2
dψ

]
In the the middle integral, using the continuity and the positivity of the integrand in (2),∣∣∣∣∣a2 − r22π

∫ δ

−δ

f(ψ + θ0)− f(θ0)

a2 − 2ar cos(ψ + θ0 − θ) + r2
dψ

∣∣∣∣∣ ≤
≤ 1− r2

2π

∫ δ

−δ

|f(ψ + θ0)− f(θ0)|
a2 − 2ar cos(ψ + θ0 − θ) + r2

dψ

≤ ε

2
· 1− r2

2π

∫ π

−π

dψ

a2 − 2ar cos(ψ + θ0 − θ) + r2
dψ ≤ ε

2

On the other hand, |θ − θ0| < δ/2 and |ψ| ≥ δ we have

|ψ + θ0 − θ| ≥ |ψ| − |θ − θ0| ≥ δ −
δ

2
=
δ

2
.

so

a2 − 2ar cos(ψ + θ0 − θ) + r2 + r2 ≥ a2 − 2ar cos

(
δ

2

)
+ r2.

Thus the other two integrals are bounded by

|I + III| ≤ a2 − r2

2π
(
a2 − 2ar cos

(
δ
2

)
+ r2

) [∫ 2π

0

|f(φ)|dφ+ 2π|f(θ0)|
]

which tends to zero as r → a−. Hence there is η > 0 so that

|I + III| ≤ ε

2
whenever a− η < r < a.

It follows that

|P [f ](r, θ)− f(θ0)| < ε whenever |θ − θ0| <
δ

2
and a− η < r < a.

which is to say
lim

(t,θ)→(a,θ0)
P [f ](θ) = f(θ0).

Note that the convergence in Poisson’s formula is better than for Fourier Series. The
pointwise proof required that f ′ be piecwise continuous too. Indeed, there are continuous
functions for which the Fourier series does not even converge, whereas they do in Poisson’s
formula.
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11. Use Poisson’s Formula to prove Weierstrass’s Approximation Theorem: if f is a 2π-periodic,
continuous function, then for every ε > 0 there is a trigonometric polynomial (finite Fourier
series) SN (θ) such that

|f(θ)− SN (θ)| < ε for all θ.

This is an example of how PDE techniques can be used to prove results in real analy-
sis. The Weierstrass Approximation Theorem is sometimes covered in first year analysis
courses. Another version says continuous functions on a compact interval may be uniformly
approximated by ordinary polynomials.

The idea is to take r close to a and approximate f by the Poisson integral. Then to
approximate the infinite sum by a finite one.

We showed in the previous problem that the Poisson integral approximates continuous
functions pointwise. Because the unit circle 0 ≤ θ0 ≤ 2π is compact, it follows from a result
in first quarter analysis that the continuous function h(φ) is uniformly continuous. Hence
neither the the δ nor the η depend on θ so the approximation is uniform. Thus it says, for
every ε > 0 there is an η > 0 so that

|P [f ](r, θ0)− f(θ0)| < ε

2
for any θ0 and whenever a− r < r < a. (3)

Now recall that the Poisson Formula was derived by summing the Fourier Series

P [f ](r, θ) =
C0

2
+

∞∑
n=1

( r
a

)n
{Cn cosnθ +Dn sinnθ} . (4)

Since we have moved an back into the formula, for n = 0, 1, 2, . . ., this leaves

Cn =
1

π

∫ 2π

0

f(φ) cosnφdφ, Dn =
1

π

∫ 2π

0

f(φ) sinnφdφ

The coefficients are bounded

|Cn|, |Dn| ≤ 1

π

∫ 2π

0

|f(φ)| dφ = M

which means that the series (4) is uniformly convergent because the summands decay ge-
ometrically since r/a < 1. Recall that the proof of Poisson’s Formula follows by replacing
Cn and Dn by their integrals, and then exchanging summation and integration by uniform
convergence of the series and then summing the series inside the integrals.

The geometric decay allows us to estimate how well the partial sums of (4) approximate the
total, thereby completing our approximation. Fix a − η < r < a, say r0 = a − η/2. Then
the error approximating the partial sum is bounded by

|P [f ](r0, θ)− SN (θ)| =

∣∣∣∣∣
∞∑

n=N+1

(r0
a

)n
{Cn cosnθ +Dn sinnθ}

∣∣∣∣∣
≤

∞∑
n=N+1

(r0
a

)n
{|Cn|+ |Dn|}

≤ 2M

∞∑
n=N+1

(r0
a

)n

=
2M

(r0
a

)N+1

1−
(r0
a

)

(5)
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which tends to zero as N → ∞. Thus for N0 = N(a,M, r0) sufficiently large, the sum is
less than ε/2. Combining (3) and (5), it follows that

|f(θ0)− SN0
(θ0)| < ε for all θ0.

where the trigonometric polynomial is given by

SN0(θ) =
C0

2
+

N0∑
n=1

(r0
a

)n
{Cn cosnθ +Dn sinnθ} .

We remark again that the series (4) may not converge at all if r = a because the Fourier series
may not converge if f is only continuous. The approximating trigonometric polynomial has
the additional (a/r)n convergence factors, which is known as an Abel Sum in the theory of
trigonometric series.

12. Solve the BVP for Laplace’s Equation in the quarter circle

(PDE) ∆u = 0, for x2 + y2 < 1 and 0 < θ <
π

2
;

(BC) u(1, θ) = θ, for 0 < θ <
π

2
,

u(r, 0) = 0,

uθ(r,
π

2
) = 0, for 0 < r < 1.

In polar coordinates, u = R(r)Θ(θ) satisfies Laplace’s Equation

0 = ∆u = urr +
1

r
ur +

1

r2
uθθ = R′′Θ +

1

r
R′Θ +

1

r2
RΘ′′.

Multiply by r2/RΘ and separate.

r2R′′(r) + rR′(r)

R(r)
= −Θ′′(θ)

Θ(θ)
= λ.

The θ equation gives the eigenvalue problem

Θ′′ + λΘ = 0, Θ(0) = 0, Θ′(π2 ) = 0.

These are symmetric boundary conditions so the eigenvalues are positive λ = β2 where
β > 0. The general solution is

Θ(θ) = A cosβθ +B sinβθ

The boundary condition Θ(0) = 0 says A = 0. The boundary condition 0 = Θ′(π2 ) =
Bβ cos(β π2 ) says β = 1, 3, 5, . . .. Thus the eigenvalus and eigenfunctions are

λn = (2n+ 1)2, Θn(θ) = sin(2n+ 1)θ, n = 0, 1, 2, 3, . . .

The corresponding r equation is

r2R′′n + rR′n − λnRn = 0, Rn is bounded in r < 1.

As in Problem 9, the solution is
Rn(r) = r2n+1.

17



The general solution is thus

u(r, θ) =

∞∑
n=0

Bnr
2n+1 sin(2n+ 1)θ.

The initial condition tells us on r = 1

θ = u(1, θ) =

∞∑
n=0

Bn sin(2n+ 1)θ

Picking off the coefficients using the inner product, and integrating by parts

Bn =
4

π

∫ π
2

0

θ sin(2n+ 1)θ dθ

=
4

π

{
−
[
θ cos(2n+ 1)θ

2n+ 1

]π
2

0

+

∫ π
2

0

cos(2n+ 1)θ dθ

2n+ 1

}

=
4

π

[
sin(2n+ 1)θ

(2n+ 1)2

]π
2

0

=
4 sin(n+ 1

2 )π

π(2n+ 1)2
=

4(−1)n

π(2n+ 1)2

Hence the Fourier Series solution is

u(r, θ) =

∞∑
n=0

4(−1)nr2n+1

π(2n+ 1)2
sin(2n+ 1)θ.

13. Let D ⊂ R2 be an open domain. Suppose u is continuous on the closure D and harmonic in
D. Suppose that BR(x) ⊂ D, the open disk of radius R and center x is completely contained
in the domain. Show the mean value property also holds on the whole disk

u(x) =
1

πR2

∫
BR(x)

u(x) dA(x).

Let 0 ≤ r ≤ R and consider the circle of radius r about x. For y = x+ ρ(cos θ, sin θ) where
0 ≤ ρ < r we have Poisson’s Formula

u(y) =
r2 − ρ2

2π

∫ 2π

0

u
(
x+ ρ(cosφ, sinφ)

)
dφ

r2 − 2ρr cos(θ − φ) + ρ2

We have the mean value property for circles simply by substituting ρ = 0 into Poisson’s
formula.

u(x) =
1

2π

∫ 2π

0

u
(
x+ r(cosφ, sinφ)

)
dφ

Substituting this for the inside integral over the whole disk gives the result

1

πR2

∫ R

0

∫ 2π

0

u
(
x+ r(cosφ, sinφ)

)
dφ r dr =

1

πR2

∫ R

0

2πu(x) r dr =
2u(x)

R2
· R

2

2
= u(x).

14. Let A and B be two disjoint smooth bounded domains in R3 and Q > 0 constant. Denote
by D = R3 − (A ∪ B) be the exterior domain. Thus ∂D = ∂A ∪ ∂B. Let u be a harmonic
function on D which tends to zero at infinity and which is constant on ∂A and constant on
∂B, and satisfies ∫

∂A

∂u

∂n
dS = Q > 0 and

∫
∂A

∂u

∂n
dS = 0 (6)

where n denotes the outer normal from D. [Interpretation: u is the electrostatic potential
outside two conductors, A carries charge Q and B is uncharged.] (Text problem 7.1.6.)
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(a) Show the solution is unique. [Hint: Use Hopf’s Maximum Principle.]

(b) Show that u ≥ 0 on D. [Hint: If not, u has a negative minimum. Use Hopf’s Maximum
Principle again.]

(c) Show u > 0 in D.

Let u and v be two solutions. Their difference w = u − v is harmonic, vanishes at infinity
and is constant on ∂A and ∂B (although we don’t know that w is zero on either ∂A or ∂B)
and ∫

∂A

∂w

∂n
dS =

∫
∂B

∂w

∂n
dS = 0. (7)

Let α and β be the values of w on the respective boundaries and suppose that the larger
of the two magnitudes occurs on ∂A, so α 6= 0 and |α| ≥ |β|. If the maximum occurs on
B, we just swap the roles of A and B in the argument. By replacing w by −w we may
assume α > 0. If one takes a large disk BR about zero that contains A and B, then for
R large enough, α > |u(x)| for all x ∈ ∂BR. It follows by the maximum principle that
the maximum of u on BR − (A ∪ B) occurs on the boundary, in fact on ∂A. By Hopf’s
Maximum Principle, the derivative is strictly increasing to a maximum from inside D

∂w

∂n
(a) > 0 for all a ∈ ∂A.

But this contradicts (7). It follows that α = β = 0 and the maximum occurs on ∂BR. By
taking R→∞, both the maximum and minimum of w on ∂BR tend to zero, which means
that at a point x ∈ D inside, |w(x)| also tends to zero. Thus w ≡ 0 in D and the solution
is unique.

We argue that u ≥ 0 on D. Let α and β be the constants on ∂A and ∂B. First we
argue that neither is negative. Suppose one of them is the more negative, say α < 0 and
β ≥ α. As before, for large R, u > α on ∂BR for R large enough. Thus the weak maximum
principle says the minimum of u is on the boundary ∂A. By Hopf’s Maximum Principle,
the derivative is strictly decreasing to a minimum from inside D

∂u

∂n
(a) < 0 for all a ∈ ∂A.

Hence ∫
∂A

∂w

∂n
dS < 0

which contradicts (6). If the minimum were on ∂B instead, then we would likewise get∫
∂B

∂w

∂n
dS < 0

which contradicts (6) also.

As before, if u(x) < 0, for large R, u(y) > u(x) on y ∈ ∂BR. Then there is a negative
minimum point z ∈ D such that u(z) ≤ u(x). But this contradicts the usual maximum
principle on BR − (A ∪B). Thus we have shown u ≥ 0 on D.

Finally, we claim u > 0 on D. First we must have α > 0. If not α = 0 and because u ≥ 0
then u is a minimum on ∂A. But this means that

∂u

∂n
(a) < 0 for all a ∈ ∂A.

contrary to (6). By the same argument β > 0. Let us rule out u(x) = 0 for any interior
point x ∈ D. Because u ≥ 0 in D ir follows that ∇u(x) = 0 at the minimum. Put a tiny
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sphere Ω ⊂ D such that x ∈ ∂Ω. Now u ≥ 0 in Ω says that u is minimum of u in Ω at x.
Let ν be the outward normal of Ω. By Hopf’s maximum Principle,

∂u

∂ν
(x) < 0,

contrary to ∇u(x) = 0.

15. Suppose u(x, y) ∈ C2([0, a]× [0, b]) is a solution of the boundary value problem for Poisson’s

equation on the rectangle. Show that u(x, y) ≤ a2

8
. (Hint: maximum principle using easy

solutions of the PDE.)

(PDE) uxx + uyy = −1, for 0 < x < π, 0 < y < 1;

(BC) u(x, 0) = u(x, b) = 0, for 0 < x < a;

u(0, y) = u(a, y) = 0, , for 0 < y < b.

Let’s consider a quadratic polynomial, whose second derivative is −1 and that is zero at
endpoints.

v(x, y) =
1

2
x(a− x).

Hence ∆ v = −1. Put w(x, y) = u(x, y)− v(x, y) to show w ≤ 0. w satisfies

(PDE) wxx + wyy = −1− (−1) = 0, for 0 < x < π, 0 < y < 1;

(BC) w(x, 0) = w(x, b) = 0− 1

2
x(a− x), for 0 < x < a;

w(0, y) = w(a, y) = 0− 0 = 0, for 0 < y < b.

Because w(x, y) ≤ 0 on all four sides, we have by the maximum principle

w(x, y) ≤ 0 for all 0 < x < a and 0 < y < b.

Hence we obtain the desired estimate by maximizing the quadratic function

u(x, y) ≤ 1

2
x(a− x) ≤ a2

8
for all 0 < x < a and 0 < y < b.

16. Let ϕ(x) be any C2 function on three dimensional space that vanishes outside some sphere.
Show the equality. (Text problem 7.2.2.)

ϕ(0) = − 1

4π

∫
R3

∆ϕ(x)

|x|
dV (x)

Let us integrate by parts on the annulus D(ε, R) where R > 0 is so big that it contains
the support of ϕ and 0 < ε < R. The formula will be the result of taking the limit ε → 0.
Applying the divergence theorem to u∇v − v∇u we get,∫

D(ε,R)

u∆ v − v∆u dV =

∫
∂D(ε,R)

(
u
∂v

∂n
− v ∂u

∂n

)
dA.

Insert the choice u = |x|−1 = r−1 and v = ϕ, we have ∆u = 0 in D(ε, R) which is away
from the singularity. Note that ϕ(x) = 0 near |x| = R so that both φ(x) = ∂rϕ(x) = 0

20



when |x| = R so that the integrals on the outer boundary of D(r,R) vanish. On the inner
boundary ∂/∂n = −∂/∂r because the normal points toward the origin. It follows that∫

D(ε,R)

∆ϕ(x)

|x|
dV (x) = −

∫
∂Bε(0)

(
1

r

∂ϕ

∂r
− ϕ(x)

∂

∂r

1

r

)
dA

= −
∫
∂Bε(0)

(
1

r

∂ϕ

∂r
+
ϕ(x)

ε2

)
dA.

(8)

Since ϕ is C2, its gradient is bounded |∇ϕ(x)| ≤M for x ∈ BR(0). It follows that∣∣∣∣∣
∫
∂Bε(0)

(
1

r

∂ϕ

∂r

)
dA

∣∣∣∣∣ ≤ M

ε
· 4πε2 → 0 as ε→ 0.

On the other hand φ(x) = φ(0) + R(x) where |R(x)| ≤ M |x − 0| since M bounds the
Lipschitz constant for ϕ. Hence∣∣∣∣∣ 1

ε2

∫
∂Bε(0)

φ(x) dA− 4πϕ(0)

∣∣∣∣∣ =

∣∣∣∣∣ 1

ε2

∫
∂Bε(0)

ϕ(x)− φ(0) dA

∣∣∣∣∣
=

1

ε2

∫
∂Bε(0)

|R(x)| dA

≤ M |ε| · 4πε2ϕ(0)

ε2
→ 0 as ε→ 0.

Thus, taking ε→ 0 and R→∞ in (8) yields the desired equation∫
R3

∆ϕ(x)

|x|
dV (x) = −4πϕ(0).

17. Show that distributions may be differentiated. If f is any distribution on R, then f ′ is a
distribution defined by the formula. (Text problem 12.1.2.)

(f ′, ϕ) = −(f, ϕ′) for all test functions ϕ.

To be a distribution, it must be linear and continuous on test functions. To check linearity,
let ϕ and ψ be test functions (C∞ functions with compact support) and let a and b be
constants.

(f ′, aϕ+ bψ) = −(f, [aϕ+ bψ]′) definition of derivative distribution.

= −(f, aϕ′ + bψ′) linearity of derivative of a smooth function.

= −a(f, ϕ′)− b(f, ψ′) linearity of the pairing f with test function.

= a(f ′, ϕ) + b(f ′, ψ) definition of derivative distribution.

To check continuity, let ϕn → ϕ be a sequence of test functions that all vanish outside a
common finite interval which for which each derivative converges uniformly to the derivative
of ϕ. Then, as n→∞,

(f ′, ϕn) = −(f, ϕ′n) definition of derivative distribution.

→ −(f, ϕ′) continuity of f for the converging sequence {ϕ′n}.
= (f ′, ϕ) definition of derivative distribution.
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18. Construct a piecewise constant approximate identity χa as follows. Show that χa → δ0
weakly as a→ 0. (Text problem 12.1.10.)

χa =


1

2a
, if −a < x < a;

0, otherwise.

Weak convergence for distributions means

(χa, ϕ)→ 0 as a→ 0− for every test function ϕ.

Since χa is a function, as a distribution its evaluates on test functions ϕ as

(χa, ϕ) =

∫ ∞
−∞

χa(s)φ(s) ds =
1

2a

∫ a

−a
ϕ(s) ds

Since ϕ is continuous at zero, for every ε > 0 there is a δ > 0 such that

|ϕ(s)− ϕ(0)| < ε whenever |x| < δ.

It follows that if 0 < a < δ,

|(χa, ϕ)− ϕ(0)| ≤
∣∣∣∣ 1

2a

∫ a

−a
ϕ(s)− ϕ(0) ds

∣∣∣∣
≤ 1

2a

∫ a

−a
|ϕ(s)− ϕ(0)| ds

<
1

2a

∫ a

−a
ε ds = ε

Hence
(χa, ϕ)→ ϕ(0) = (δ0, ϕ) as a→ 0.

Since ϕ was arbitrary we have shown χa → δ0 weakly.

19. Verify that the Fourier Transform of the square pulse equals the sine. (Text problem
12.3.1b.)

F [H(a− |x|)](k) =
2

k
sin ak.

The square pulse equals one if |x| < a and zero if |x| > a. Thus its Fourier transform equals

F [H(a− |x|)](k) =

∫ ∞
−∞

H(a− |x|)e−ikx dx

=

∫ a

−a
e−ikx dx

=

[
e−ikx

−ik

]a
−a

=
1

−ik
(
e−ika − eika

)
=

2

k
sin ka.
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20. Verify the Fourier Transform of the derivative formula. (Text problem 12.3.2a.)

F
[
∂f

∂x

]
(k) = ikF [f ] (k).

In case f is a C1 function with compact support, we can integrate by parts. Suppose that
the support of f is contained in the interval (−R,R). Thus

F
[
∂f

∂x

]
(k) =

∫ ∞
−∞

∂f

∂x
(x)e−ikx dx

=

∫ R

−R

∂f

∂x
(x)e−ikx dx

=

[
f(x)e−ikx

]R
−R

+ ik

∫ R

−R
f(x)e−ikx dx

= 0 + ik

∫ ∞
−∞

f(x)e−ikx dx

= ikF [f ](k).

In case f is a distribution, for any test function ϕ, the definition of the Fourier transform is

(F [f ], ϕ) = (f,F [ϕ]).

We get for the derivative and for any test function (compactly supported)

(F [f ′] , φ) = (f ′,F [φ])

= −
(
f, (F [φ])′

)
= −

(
f,

∂

∂k

∫ ∞
−∞

e−ikxφ(x) dx

)
= −

(
f,

∫ ∞
−∞

∂

∂k
e−ikxφ(x) dx

)
= −

(
f,

∫ ∞
−∞
−ixe−ikxφ(x) dx

)
=
(
f,F [ixφ(x)]

)
=
(
F [f ](k), ikφ(k)]

)
=
(
ikF [f ](k), φ(k)

)
.

21. Assuming ϕ(x) is bounded and continuous, show that there is at most one solution of the
initial value problem for the heat equation on the line. In particular, if ϕ and u are bounded,
prove the maximum principle |u| ≤ sup |ϕ|.

(PDE) ut = uxx, for −∞ < x <∞, 0 < t < t0;

(IC) u(0, x) = ϕ(x), for −∞ < x <∞;

(BC) u(t, x)ex
2/4t0 → 0 uniformly in t as |x| → ∞.

Hint: make a change of dependent variables [Problem from Weinberger, First Course in
PDE, Xerox Pub., 1965, p. 320.]

u(t, x) =
v(t, x)√
t0 − t

exp

(
x2

4(t0 − t)

)
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Take the kernel

H(t, x) =
1√
t0 − t

exp

(
x2

4(t0 − t)

)
.

It satisfies the heat equation

H > 0, Hx =
xH

2(t0 − 1)
, Ht = Hxx

so

0 = ut − uxx = (vt − vxx)H − 2vxHx + v(Ht −Hxx) =

(
vt − vxx −

xvx
t0 − t

)
H.

Thus v satisfies the maximum principle in any region [−R,R] × [0, t0). Now choose any
−∞ < ξ <∞ and 0 < τ < t0.

Since we assume u(x, t)e−x
2/4t0 → 0 uniformly in t, for every ε > 0 there is an R > 0 so

that R > |ξ| and |u(x, t)| ≤ εeR2/4t0 whenever 0 ≤ t < t0 and |x| ≥ R. Then

|v(t, x)| ≤ ε
√
t0 − t exp

(
x2

4

{
1

t0
− 1

(t0 − t)

})
≤ ε
√
t0.

for all 0 < t ≤ t0 and |x| ≥ R. Since the initial condition

v(0, x) = ϕ(x)
√
t0 exp

(
−x2

4t0

)
,

by the maximum principle on [−R,R]× [0, τ ], we have

|v(τ, ξ)| ≤ max

[
ε
√
t0,
√
t0 sup

{
|ϕ(x)| exp

(
−x2

4t0

)}]
Since ε > 0 was arbitrary,

|v(τ, ξ)| ≤
√
t0 sup

{
|ϕ(x)| exp

(
−x2

4t0

)}
.

It follows that for every (ξ, τ) ∈ (−∞,∞)× [0, t0],

|u(τ, ξ)| ≤
√
t0√

t0 − τ
exp

(
ξ2

4(t0 − τ)

)
sup

{
|ϕ(x)| exp

(
−x2

4t0

)}
.

Now, if w is the difference of two solutions of the IVP, this estimate shows that w ≡ 0 so the
solution is unique. One can continue the solutions to t0 ≤ t ≤ 2t0 and then to 2t0 ≤ t ≤ 3t0
and so on to prove w ≡ 0 for all t.

If u and ϕ are bounded, then the condition holds for t0 arbitrarily large. Fix (ξ, τ) ∈
(−∞,∞)× [0,∞), and take t0 > τ . Letting t0 →∞ in the bound gives

|u(τ, ξ)| ≤
√
t0√

t0 − τ
exp

(
ξ2

4(t0 − τ)

)
sup

{
|ϕ(x)| exp

(
−x2

4t0

)}
→ sup |ϕ(x)|.

22. Using Fourier transforms, solve the initial value problem for the wave equation on the real
line.

(PDE) utt = c2uxx, for −∞ < x <∞, 0 < t;

(IC) u(x, 0) = 0,

ut(x, 0) = δ(x), for −∞ < x <∞;
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Take Fourier transform with respect to x, using ût = ût, ûx = iωû and δ̂ = 1,

ûtt = −c2ω2û, û(0, ω) = 0, ût(0, ω) = 1.

This ODE in t has the solution

û(t, ω) =
1

cω
sin cωt =

1

2c
· 2

ω
sin cωt

From Problem 19,

F [H(a− |x|)](ω) =
2

ω
sin aω.

Taking a = ct,

u(t, x) =
1

2c
H(ct− |x|).

This is the fundamental solution. An initial unit impulse of velocity at the origin results in
a widening square wave.

23. Using the source function from Problem 22, solve the wave equation on the line, where ϕ
and ψ are bounded, piecewise continuously differentiable functions.

(PDE) utt = c2uxx, for −∞ < x <∞, 0 < t;

(IC) u(x, 0) = ϕ(x),

ut(x, 0) = ψ(x), for −∞ < x <∞;

Decompose the solution into u = v + w where v solves

(PDE) vtt = c2vxx, for −∞ < x <∞, 0 < t;

(IC) v(x, 0) = ϕ(x),

vt(x, 0) = 0, for −∞ < x <∞.

and w solves

(PDE) wtt = c2wxx, for −∞ < x <∞, 0 < t;

(IC) w(x, 0) = 0,

wt(x, 0) = ψ(x), for −∞ < x <∞.

Since the source function kernel solves the wave equation (at least in the distributional
sense) then

w(t, x) =
1

2c

∫ ∞
−∞

H(ct− |x− y|)ψ(y) dy =
1

2c

∫ x+ct

x−ct
ψ(y) dy.

solves the PDE and IC for w. The integral makes sense by the piecewise continuity of
ψ. Of course this recovers the second part of d’Alembert’s solution. We also use the fact
that the derivative zt solves the wave equation if z does. Consider the following IVP for z
Decompose the solution into u = v + w where v solves

(PDE) ztt = c2zxx, for −∞ < x <∞, 0 < t;

(IC) z(x, 0) = 0,

zt(x, 0) = ϕ(x), for −∞ < x <∞.

As for w, the solution is

z(t, x) =
1

2c

∫ ∞
−∞

H(ct− |x− y|)ϕ(y) dy.
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Now use the fact that as distributions, H ′ = δ. To see this, for any test function ζ, for R
larger than the support of ζ,

(H ′, ζ) = −(H, ζ ′) = −
∫ ∞
−∞

H(s)ζ ′(s) ds = −
∫ R

0

ζ ′(s) ds = −ζ(R) + ζ(0) = ζ(0) = (δ, ζ).

Differentiating we find

zt(t, x) =
1

2c

∂

∂t

∫ ∞
−∞

H(ct− |x− y|)ϕ(y) dy

=
1

2

∫ ∞
−∞

H ′(ct− |x− y|)ϕ(y) dy

=
1

2

∫ ∞
−∞

δ(ct− |x− y|)ϕ(y) dy

=
1

2

[
ϕ(ct− x) + ϕ(ct+ x)

]
.

One checks that ztt(0, x) = 0 so it solves the IC’s for v, thus v = zt. Of course, this is the
first half of d’Alembert’s formula so we are not surprised.

24. Find by means of Plancherel’s Formula. [Problem from Weinberger, First Course in PDE,
Xerox Pub., 1965.]

(a)

∫ ∞
−∞

sin2 x

x2
dx

(b)

∫ ∞
−∞

∣∣∣∣1− e−iaxix

∣∣∣∣2 dx
Plancherel’s formula for f ∈ L2 is∫ ∞

−∞
|f(x)|2 dx =

1

2π

∫ ∞
−∞
|f̂(ω)|2 dω

By problem 19,

F
[
H(1− |x|)

2

]
(ω) =

1

ω
sinω.

Thus from the Plancherel formula∫ ∞
−∞

sin2 ω

ω2
dω =

∫ ∞
−∞
|f̂(ω)|2 dω = 2π

∫ ∞
−∞
|f(x)|2 dx = 2π

∫ ∞
−∞

∣∣∣∣H(1− |x|)
2

∣∣∣∣2 dx =
π

2

∫ 1

−1
dx = π.

Also, observing that

f̂(ω) =

∫ ∞
−∞

f(x)eiωx dx =

∫ a

0

eiωx dx =
1− e−iaω

ix

where f is a pulse from 0 to a,

f(x) = H(x)−H(x− a).

Thus from the Plancherel formula∫ ∞
−∞

∣∣∣∣1− e−iaωiω

∣∣∣∣2 dω =

∫ ∞
−∞
|f̂(ω)|2 dω = 2π

∫ ∞
−∞
|f(x)|2 dx

= 2π

∫ ∞
−∞
|H(x)−H(x− a)|2 dx = 2π

∫ a

0

dx = 2πa.
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