
Math 5470 § 1.
Treibergs

Second Midterm Exam Name: Practice Problems
March 22, 2016

1. Marvel’s model of public opinion considers four nonoverlapping groups in a population.
Let p be the unchanging fraction of true believers in opinion A. Let x denote the fraction
sympathetic but uncommitted. If someone argues an opposing opinion B, then these people
become an AB, seeing the merits of both positions. Likewise, let y be the fraction of B
sympathetic but uncommitted believers who will become AB upon hearing A argued. The
AB population does not try to convert anyone but will join the A or B camp upon hearing
such an argument. At every instant, two random people are chosen, an advocate and a
listener. Let nAB = 1− p− x− y. Explain the equations. Assuming that initially everyone
believes B, x(0) = 0, nAB(0) = 0 so y(0) = 1 − p. Let the dynamics come to equilibrium.
Show that the final state changes abruptly: for small p most people accept B but for p > pc

most accept A. Find pc. What kind of bifurcation occurs there? [Note: this was inspired by
Strogatz’s problem 8.1.15. However, there is a typo in the equations.]

ẋ = (p+ x)nAB − xy

ẏ = nABy − (p+ x)y

To explain the equations, note that the population is split into four factions 1 = p + x +
y + nAB and since we assume that listeners and advocates encounter each other randomly,
the probability of an encounter is given by the product of proportions. Let us present the
matrix of possible encounters and indicate their effect on the x, y populations, resp.

Listeners\Advocates P X N Y
P 0,0 0,0 0,0 0,0
X 0,0 0,0 0,0 -,0
N +,0 +,0 0,0 0,+
Y 0,- 0,- 0,0 0,0

For example, if y hears p then there is no change in x but y switches to nAB and decreases
y. Also is NAB does not advocate so both its columns are zero. Thus each equation has
three terms, with signs as in the table.

Replacing nAB in the equations yields the system

ẋ = (p+ x)(1− p− x− y)− xy = p(1− p)− 2px− py + x− x2 − 2xy = f(x, y)

ẏ = (1− p− x− y)y − (p+ x)y = y − 2py − 2xy − y2 = g(x, y)

The quantities are nonnegative so 0 ≤ x, 0 ≤ y and 0 lengthAB which implies x+ y ≤ 1− p,
thus we’re interested in values in this triangle T only. ẏ ≥ 0 at y = 0, ẋ = p(1 − p − y)
which is nonnegative for 0 ≤ y ≤ 1− p and ẋ+ ẏ = −(p+ 2x)y ≤ 0 on x ≥ 0 and y ≥ 0, so
T is a trapping region.

Let’s find the fixed points. g = 0 implies y = 0 or 2x + y = 1 − 2p. If y = 0 then f = 0
implies (p + x)(1 − p − x) = 0 which means x = 1 − p is the only solution in T . If y 6= 0
and y = 1− 2p− 2x, then f = 0 implies

y =
(p+ x)(1− p− x)

p+ 2x

Equating y yields 3x2 − (1− 4p)x+ p2 = 0 whose root in T are

x∗± =
1− 4p±

√
(1− 4p)2 − 12p2

6
, y∗± = 1− 2p− 2x∗± =

2− 2p∓
√

1− 8p+ 4p2

3
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Figure 1: R c© plots of isoclines for p = .1 and p = .2.
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Figure 2: R c© Bifurcation Diagram.

The radicand 1 − 8p + 4p2 is nonnegative for 0 ≤ p < pc where pc = 1 −
√

3
2 = 0.1339746

and negative if pc < p ≤ 1.

We compute the stability at the three rest points. The Jacobian matrix is

J(x, y) =

1− 2p− 2x− 2y −p− 2x

−2y 1− 2p− 2x− 2y


At (1− p, 0) it is

J(1− p, 0) =

−1 p− 2

0 −1


which is a stable degenerate node. At (x∗±, y

∗
±), using y∗± = 1− 2p− 2x∗±

J(x, y) =

1− 2p− 2x− 2y −p− 2x

−2y 1− 2p− 2x− 2y

 =

 −y∗ y∗ + p− 1

−2y∗ −y∗


so the trace is τ = −2y∗ < 0 and the determinant is

∆ = y∗(3y∗ + 2p− 2) = ∓y∗
√

1− 8p+ 4p2

Thus in the range 0 < p < pc, the radicand is positive and (x∗+, y
∗
+) is a saddle and (x∗−, y

∗
−)

is a stable node. A saddle-node bifurcation happens at p = pc.

As long as p < pc there is a stable node at (x∗−, y
∗
−) that attracts all initial points on the y-

side of the stable manifold W s of (x∗+, y
∗
+). But as p increases through pc ≈ 13%, the saddle

and node collide and annihilate, and there is a catastrophe with (1 − p, 0) the surviving
globally stable node, which attracts all public opinion.
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Figure 3: Phase portraits for p = .1 and p = .2 plotted using 3D-XplorMath c©.

2. Find the fixed points and classify them. Show that x = y is an invariant line. Show that
|x(t)− y(t)| → 0 for all other trajectories. Sketch the phase portrait. Observe that solutions
approach a certain curve as t → −∞. Can you explain this intuitively and suggest an
approximate equation for this curve? [Strogatz, 6.3.9.]

ẋ = y3 − 4x

ẏ = y3 − y − 3x

To find the fixed points, f = 0 says x = y3/4 so g = 0 implies y(y2 − 4) = 0 so y = 0,±2
and x = 0,±2, resp. The Jacobian is

J(x, y) =

−4 3y2

−3 3y2 − 1


At the origin

J(0, 0) =

−4 0

−3 −1


is a stable node. The slow λ1 = −1 incoming direction is (1, 0) and the fast λ1 = −4
incoming direction is (1, 1). Most trajectories come in parallel to the slow direction in the
linearized flow. The nonlinear terms are much smaller at the origin so do not affect the
incoming direction. At the origin

J(±2,±2) =

−4 12

−3 11


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Figure 4: Phase portrait using 3D-XplorMath c©.

The determinant is ∆ = −8 which is a saddle. The eigenvector for λ = 1 is (1, 1) and for
λ = −8 is (4, 1).

To see that the line x = y is invariant and that |x(t)−y(t)| → 0 for all trajectories, consider
w = x− y.

ẇ = ẋ− ẏ = (y3 − 4x)− (y3 − y − 3x) = −x− y = −w
The solution is w(t) = (x0 − y0)e−t. Thus if x0 − y0 = 0 then w(t) = 0 for all time: the
flow stays on the line x = y. On the other hand

|x(t)− y(t)| = |w(t)| = |x0 = y0|e−t → 0

as t→∞.

What is the curve when t→ −∞? The time-reversed equations are

ẋ = −y3 + 4x

ẏ = −y3 + y + 3x

The solution moves quickly as t → ∞ in the reversed equations, until the y motion slows
down. That happens approximately when −y3 + 4x = 0 or y = (4x)1/3. Then y motion is
slow, but

ẋ = −y3 + 3x+ y = −y3 + 4y + (x− y) ≈ 0 + w

grows exponentially. (The better behaved time-reversed equations were used to make the
plot.)

3. Is the origin a nonlinear center? [Strogatz 6.6.10.]

ẋ = −y − x2

ẏ = x

The system is reversible in the following more general sense: it is invariant under t 7→ −t
and x 7→ −x. Indeed, if we put ξ(τ) = −x(−t) then ξ′ = ẋ = −y − x2 = −y − (−ξ)2 and
y′ = −ẏ = −x = ξ. We may apply the theorem on centers of reversible systems because
both f and g are continuously differentiable (they are polynomials!) If the linearization is
a center, then so is the nonlinear system near the origin. The Jacobian is

J(x, y) =

−2x −1

1 0

 , J(0, 0) =

0 −1

1 0


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Figure 5: Reversible system with center using 3D-XplorMath c©.

whose eigenvalues are ±i. Thus the linearization at the origin has centers, so by the theorem,
so does the nonliniear system near the origin.

4. Can a fixed point be Liapunov stable but not attracting? Can a fised point be attracting but
not Liapunov stable? Give examples and explain.

Let’s give examples in R2. Consider linear centers ẍ+ x = 0 or

ẋ = y

ẏ = −x

The general solution is x(t) = A cos t + B sin t and y(t) = ẋ(t) = −A sin t + B sin t, which
are circles centered at the origin. The origin is Liapunov stable but not attracting. Indeed,
if (x0, y0) 6= (0, 0) then (x(t), y(t)) does not converge to (0, 0) as t→∞, so the origin is not
attractive. It is Liapunov stable. We have to verify the definition of Liapunov stability.

Definition 1. Suppose we have a dynamical system in an open set Ω ∈ R2 given by a
differential system {

ẋ = f(x, y)
ẏ = g(x, y)

x(0) = x0

y(0) = y0

where f, g ∈ C1(Ω) and (x0, y0) ∈ Ω is any initial point. We say a rest point (x∗, y∗) ∈ Ω
is Liapunov Stable if for every ε > 0 there is a δ > 0 such that (x(t), y(t)) ∈ Ω exists
and satisfies ‖(x(t), y(t)) − (x∗, y∗)‖ < ε for all t ≥ 0 whenever (x0, y0) ∈ Ω satisfies
‖(x0, y0)− (x∗, y∗)‖ < δ.

To show that the centers are Liapunov stable, choose ε > 0. Let δ = ε. Then whenever
‖(x0, y0) − (0, 0)‖ < δ then ‖(x(t), y(t)) − (0, 0)‖ = ‖(x0, y0) − (0, 0)‖ < δ = ε so (0, 0) is
Liapunov stable.
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An example of an attractive system that is not Liapunov stable is given by the critical
system in the infinite period bifurcation.

ṙ = r(1− r2)

θ̇ = 1− cos θ

Note that (r∗, θ∗) = (1, 0) is a rest point. Along the ray θ0 = 0 there is no angular change
but if r0 > 0, (r(t), θ(t)) → (1, 0). Away from this ray, θ̇ > 0 so if r0 > 0 and 0 < θ0 < 2π
then θ increases to 2π taking infinite time. In the meanwhile r(t) → 1 as t→∞ so (1, 2π)
is attractive. However, it is not Liapunov stable. Indeed, for any 0 < ε < 1, flow does
not stay in the ε-neighborhood of (1, 0) no matter how close (r0, θ0) is to (1, 0). For any
0 < δ < 1 take r0 = 1 and 0 < θ0 < δ/2 so ‖(r0, θ0) − (1, 0)‖ < δ. The point (r(t), θ(t))
flows around the circle and at some t1 > 0 crosses the point is diametrically opposite the
initial point (r(t1), θ(t1)) = (1, π) which is not in the ε neighborhood of (0, 1).

5. Find the index of the vector field with respect to the unit circle x2 + y2 = 1.

ẋ = x2 + y2 = f(x, y)

ẏ = x2 − y2 = g(x, y)

Let (cos t, sin t) run through the unit circle C as 0 ≤ t ≤ 2π. Note that on the circle we
have f(x, y) = 1 for all points on C. This means that the vector field V = (f, g) alway has
a positive component in the positive x direction, and doesn’t wind around the origin. Its
angle with e1 is

φ(t) = ∠(V (t), e1) = Atn
(
g(cos t, sin t)
f(cos t, sin t)

)
= Atn(cos2 t− sin2 t) = Atn(cos 2t)

which is a periodic function. Thus the index is

indC(V ) =
1
2π

(φ(2π)− φ(0)) = 0.

6. Consider the equation
ẍ = x− x2

Find a conserved quantity for the system Find and classify the equilibrium points. Sketch
the phase portrait. Find the equation for the homoclinic orbit that separates the closed and
non-closed trajectories.

Multiplying by ẋ

ẍẋ− xẋ+ x2ẋ =
(

1
2
ẋ2 − 1

2
x2 +

1
3
x3

)′
= 0

and integrating gives the desired conserved quantity

W =
1
2
ẋ2 − 1

2
x2 +

1
3
x3

Putting y = ẋ lets us write the system

ẋ = f(x, y) = y

ẏ = g(x, y) = x− x2

The ẋ = y = 0 isocline is y = 0 (Red line in Fig. 1) where flow is vertical. Above the axis,
flow is to the right, below to the left. The ẏ = x− x2 = 0 isoclines are the two (Blue) lines
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Figure 6: Nullclines and Trajectories from 3D-XplorMath c©.

x = 0 and x = 1 where flow is horizontal. between the lines, flow is up, outside is down.
The rest points are intersections of the isoclines, (0, 0) and (1, 0).

The Jacobian is

J(x, y) =


∂f

∂x

∂f

∂x
∂g

∂y

∂g

∂y

 =

 0 1

1− 2x 0


At the rest point (0, 0),

J(x, y) =

0 1

1 0


has determinant ∆ = −1 and trace τ = 0 which is a saddle. Since the eigenvalues add to
zero, they are λ1 = 1 and λ2 = −1. Since they have nonzero real parts, the behavior of the
linear and nonlinear flows near (0, 0) are conjugate: the flow is a saddle. At the rest point
(1, 0),

J(x, y) =

 0 1

−1 0


has determinant ∆ = −1 and trace τ = 0 which is a center. The eigenvalues are λ1 = i and
λ2 = −i. Thus the Hartman-Grobman Theorem does not apply, and we cant be sure that
the nonlinear flow will al;so have centers. However, since there is a conserved quantity, the
trajectories follow level sets W (x(t), y(t)) = C. Near (1, 0), substituting x = (x− 1)+1 the
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conserved quantity is is

W (x, y) =
1
2
y2 − 1

2
x2 +

1
3
x3

=
1
2
y2 − 1

2
[(x− 1) + 1]2 +

1
3
[(x− 1) + 1]3

= −1
6

+
1
2
y2 +

1
2
(x− 1)2 +

1
3
(x− 1)3

The cubic term is small for x near 1 so this says the trajectories which are level sets of W
near (1, 0) where W = −1/6 are closed curves too.

The homoclinic orbit (from (0, 0) to itself) is the x ≥ 0 part of the level set

1
2
y2 − 1

2
x2 +

1
3
x3 = W (0, 0) = −1

6
.

7. Show that the following system does not have nontrivial periodic orbits.

ẋ = −y − x3

ẏ = x− y3

The only rest point is the origin. To see it, note that f = 0 implies y = −x3 so g = 0
implies x = y3 = −x9 or x(1 + x8) = 0 which has only x = 0 as the solution. Hence y = 0.

Flow of the linear part is circles and for the nonlinear part is inward. It suggests to consider
the Liapunov function V = x2 + y2. Differentiating,

V̇ = 2xẋ+ 2yẏ = 2x(−y − x3) + 2y(x− y3) = −2(x4 + y4)

which is negative away from the origin so V decreases for all time on trajectories starting
away from the origin. Thus there cannot be nontrivial (i.e., not a single point) closed orbits
because they contain points other than the origin which may be used as starting points
from which V (x(t), y(t)) decreases forever instead of oscillating as it would do on a periodic
trajectory. Incidentally, finding a global strict Liapunov funntion implies that the origin is
asymptotically stable with basin of attraction the whole plane.

Another argument may be given by Dulac’s criterion. Observe that

div(f, g) =
∂f

∂x
+
∂g

∂y
= −3x2 − 3y2

which is negative away from the origin. Thus, if C is any nontrivial periodic orbit and D
the region enclosed by C, then by the divergence theorem,

0 >
∫∫

D

div(f, g) da =
∫

∂D

(f, g) • ν ds = 0

is a contradiction. Here ∂D = ±C is the boundary, which is C taken with the positive
orientation and ν is the outward unit normal vector which is perpendicular to the flow
direction.

8. In the given system, a Hopf bifurcation occurs at the origin at some critical value of the
parameter µ. What is this critical value?

ẋ = y + µx

ẏ = −x+ µy − x2y
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A Hopf bifurcation occurs if a complex conjugate pair of roots cross the imaginary axis.
The Jacobian is

J(x, y) =

 µ 1

−1− 2xy µ− x2

 ; J(0, 0) =

µ −1

1 µ


The eigenvalues are roots of (µ − λ)2 + 1 = 0 or λ = µ ± i. Thus the pair crosses the
imaginary axis exactly when µ = 0. Linearization at (0, 0), says stability changes from
stable to unstable as µ increases through zero.

9. Consider the following system in polar coordinates. The system is known to undergo a
bifurcation as the parameter µ passes through a certain critical value µc. Find that value
and describe the type of bifurcation.

ṙ = r(1 + µr + r2)

θ̇ = 1 + sin θ cos θ

Note that sin θ cos θ = 1
2 sin(2θ) ∈ [− 1

2 ,
1
2 ] so that 1

2 ≤ θ̇ ≤ 3
2 . Hence the flow winds around

the origin in a counterclockwise direction at speeds that vary according to angle. Thus the
origin is the only fixed point.

The nonegative roots of r(1 + µr + r2) are zero and

r =
−µ±

√
µ2 − 4

2

Hence there are no roots if |µ| < 2 and the roots are negative if µ ≥ 2. Thus the bifurcation
point is µ = −2, and there are two positive roots if µ < −2. For µ = −2, the root is r± = 1,
which is an periodic orbit which is semistable: it is approached by flow from the inside and
flow spirals away on the outside. For µ < −2, there are two roots 0 < r− < r+. ṙ is negative
between the roots and positive outside. Thus r± correspond to two limit cycles, the inner
one is stable as flow approaches it from outside and inside, and the outer one is stable since
trajectories leave it inside and outside, in other words, it is stable for backward flow.

Thus the bifurcation is a saddle-node bifurcation of cycles. As the parameter is increased
through −2, two circular cycles, a stable inner one and an unstable outer one merge into a
semistable cycle at µ = −2 and r = 1 and then vanishes leaving only an outward spiral in
the whole plane.
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Figure 7: Limit cycles : two (µ = .− 2.2), one (µ = −2), none (µ = −1.8) [3D-XplorMath c©]
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10. Consider the following system in polar coordinates. The system is known to undergo a
bifurcation as the parameter µ ≥ 0 passes through a certain critical value µc. Find that
value and describe the type of bifurcation.

ṙ = r(1− r2)

θ̇ = 1 + µ cos θ

The system has an unstable rest point at the origin and trajectory at r = 1. For µ < 1
we have θ̇ > 0 and r = 1 is a stable limit cycle. But at µ ≥ 1 there are two solutions of
1+µ sin θ = 0, namely π/2 < θ− ≤ 3π ≤ θ+ < 3π/2. The rays θ = θ± are invariant: flow is
toward r = 1 along these rays. For θ− < θ < θ+ the angular direction reverses sonce θ̇ < 0
there. Thus (r, θ) = (1, θ−) is a stable rest point and (1mθ+) is a saddle. This is an infinite
period bifurcation: as µ increases throught µc = 1, flow on the stable limit cycle slows until
it stops at θ = π, when the homoclinic orbit from (1, π) along r = 1 to itself takes infinite
time, and then a stable node and saddle form.
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Figure 8: Infinite time bifurcation : µ = .8, µ = .1, µ = 1.2. [3D-XplorMath c©]

11. Find the value of the parameter where the system undergoes a homoclinic bifurcation. Sketch
the phase portrait just above and below the bifurcation.

ẍ− (6x2 − 4x3 − 6ẋ2 + 12µ)ẋ− x+ x2 = 0

The corresponding system is

ẋ = y

ẏ = x− x2 + (6x2 − 4x3 − 6y2 + 12µ)y

The rest points are at y = 0 and x − x2 = 0 so at x = 0, 1. If the y term were not in the
equation then there is a conserved quantity

V =
1
2
y2 − 1

2
x2 +

1
3
x3

Is it conserved for some choices of µ? Checking its evolution in the full equation,

V̇ = yẏ − (x− x2)ẋ (1)

= y
[
x− x2 + (6x2 − 4x3 − 6y2 + 12µ)y

]
− (x− x2)y (2)

= (6x2 − 4x3 − 6y2 + 12µ)y2 (3)

= 12(µ− V )y2 (4)

Thus V̇ is nonnegative if V < µ, zero if V = µ and nonpositive if V < µ. In case µ = 0
there is a homoclinic loop

Γ0 = {(x, y) : V (x, y) = 0, x ≥ 0}

which passes through (0, 0) and (1.5, 0) where the flow is downward so clockwise in Γ0.
Points outside the loop have V > 0 so V is decreasing unless y = 0 but even then flow
doesn’t stop off the rest points so V continues to decrease. Inside the loop V < 0 so
similarly V is increasing. Thus the homoclinic orbit is attracting. The Jacobian is

J(x, y) =

 0 1

1− 2x+ 12xy − 12x2y 6x2 − 4x3 − 18y2 + 12µ


13



so

J(0, 0) =

0 1

1 12µ


whose eigenvalues are 6µ ±

√
36µ2 + 1 with eigenvectors (1, 6µ ±

√
36µ2 + 1), resp. For

µ = 0 this is λ± = ±1 with eigenvectors (1,±1), resp. which is a saddle.

When − 1
6 < µ < 0 then the level curve

Γµ = {(x, y) : V (x, y) = µ, x > 0}

is invariant and is a closed loop inside Γ0. It does not contain fixed points so is a periodic
orbit. If (x − 0, y0) is a point with x0 > 0 and − 1

6 < V (x0, y0) < µ then V̇ ≥ 0 and
(x(t), y(t)) tends to Γµ as t → ∞. Similarly, if x0 > 0 and µ < V (x0, y0) < 0 then V̇ ≤ 0
then ((x(t), y(t)) is trapped inside V −1(0) and (x(t), y(t)) spirals inward to Γµ as t→∞. In
particular, the (1, 6µ +

√
36µ2 + 1) branch of the unstable manifold starting at the origin

spirals down to Γµ. If (x0, y0) with x0 > 0 is on the stable manifold of the origin then
(x(t), y(t)) → (0, 0) as t → ∞. But running time backward, (x(t), y(t)) goes outside the
unstable manifold at the origin and continues to the positive y-axis and then off to infinity
as t→ −∞. In particular, there is no longer a homoclinic loop from Wu at the origin back
to W s at the origin. As µ → 0 the limit cycle Γµ grows passing closer and closer to the
fixed point at the origin; it takes longer and longer to pass by the fixed point (0, 0) and so
the period goes to infinity.

Next we consider µ > 0. The invariant curve V −1(µ) is unbounded without closed loops. In
fact, we argue that there are no closed periodic orbits. For (x0, y0) on Wu near the origin,
V (x0, y0) is close to zero and less than µ. V̇ ≥ 0 and increases since the trajectory does
not stop at y = 0. The trajectory cannot close and so passes outside W s at the origin, thus
the homoclinic loop is destroyed. Thus if (x0, y0) is any point within Γ0 which is not a rest
point (i.e., x0 > 0 and − 1

6 < V (x0, y0) < 0 then (x0, y0) is either on the stable manifold
of the origin or eventually the trajectory winds its way out of Γ0 and shoots off to infinity
as t increases. V̇ > 0 on Γ0 so flow is outward. Similar considerations show that points
starting outside Γ0 also tend to infinity. Thus any point in the plane, not a rest point or on
the stable manifold of the origin must eventually shoot off to infinity as t increases.

[Problem from R. Clark Robinson, An Introduction to Dynamical Systems Continuous and
Discrete, 2004, Pearson Education Inc., pp. 203–205.]

12. Consider the system where a and b are parameters (0 < a ≤ 1, 0 ≤ b < 1
2 ). Rewrite in polar

coordinates. Prove that there is at least one limit cycle, and if there are several, they all
have the same period T (a, b). Prove that for b = 0 there is only one limit cycle. [Strogatz,
Problem 7.3.7.]

ẋ = y + ax(1− 2b− x2 − y2)

ẏ − x+ ay(1− x2 − y2)

Let x = r cos θ and y = r sin θ so x2 + y2 = r2. Substituting,

ṙ cos θ − rθ̇ sin θ = r sin θ + ar(1− 2b− r2) cos θ

ṙ sin θ + rθ̇ cos θ − r cos θ + ar(1− r2) sin θ

Multiplying one equation by sin θ and the other by cos θ and adding yields the equations

ṙ = ar(1− r2)− 2abr cos2 θ = f

θ̇ = −1 + 2ab sin θ cos θ = g

14



Figure 9: Homoclinic Bifurcation for µ = .02., 0,−.02 plotted using 3D-XplorMath c©.
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Note that the second equation does not involve r so may be integrated along any closed
orbit to find the period since 0 ≤ ab < 1 so θ̇ < 0

T (a, b) =
∫ −π

θ=π

dt

dθ
dθ = −

∫ π

θ=−π

dt

dθ
dθ =

∫ π

θ=−π

dθ

1− 2ab sin θ cos θ

We shall not integrate this, but it may be achieved using complex analysis or a u = tan(θ/2)
substitution. The same time occurs for all closed orbits.

Suppose b = 0. Then the r equation reduces to

ṙ = ar(1− r2)

which has an unstable fixed point at r = 0 and a stable one at r = 1 since 0 < a. Thus all
trajectories that don’t start at the fixed points limit to the single r = 1 orbit. Thus r = 1
is the unique closed orbit. Because 0 < a and 1 ≤ 2b < 1, then f satisfies

ar[1− 2b− r2] ≤ f = ar[1− r2 − 2b cos2 θ] ≤ ar[1− r2]

Let R2
1 = 1−2b > 0 and R2 = 1. By the left inequality, we see that 0 = aR1[1−2b−R2

1] ≤ f
and by the right inequality f ≤ aR2[1− R2

2] = 0. It follows that the annulus R1 ≤ r ≤ R2

is a trapping region. The flow on the inner circle is not inward and the flow on the outer
circle is not outward. Also there are no rest points because θ̇ < 0 on this annulus. Thus we
may apply the Poincaré Bendixson theorem: any trajectory starting in the annulus must
limit to a limit cycle C in the annulus. This limit cycle is a nontrivial periodic trajectory.

13. Consider P. Waltman’s predator-prey system where x ≥ 0 is the prey population whose
growth in the absence of the predator is limited by a unit carrying capacity so it has negative
growth rate for x > 1. The predator y ≥ 0 dies out when no predator is present and
0 < µ < 1 is a parameter. Show that the system undergoes a Hopf bifurcation for some
parameter value µ = µc to be determined. Determine if the bifurcation is supercritical or
subcritical. Show that there are no closed orbits at µ = µc and on one side of µc. Show
that there exists a closed nontrivial periodic obit on the other side. [Problem from R. Clark
Robinson, An Introduction to Dynamical Systems Continuous and Discrete, 2004, Pearson
Education Inc., pp. 221–224.]

ẋ = x

(
1− x− 2y

1 + 2x

)
ẏ = y

(
2x

1 + 2x
− µ

)
The fixed points occur at y = 0 when x = 0 or x = 1. If y 6= 0 then x∗ = µ/2(1 − µ) and
(1− x)(1 + 2x) = 2y so y∗ = (2− 3µ)/4(1− µ)2. This being positive implies µ < 2/3. The
Jacobian is

J(x, y) =

1− 2x− 2y
(1 + 2x)2

− 2x
1 + 2x

2y
(1 + 2x)2

2x
1 + 2x

− µ


At the the rest point (0, 0)

J(0, 0) =

1 0

0 −µ


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the system is an saddle. At (1, 0)

J(1, 0) =

−1 −2
3

0
2
3
− µ


the system has a saddle since µ < 2/3. At (x∗, y∗),

J

(
µ

2(1− µ)
,

2− 3µ
4(1− µ)2

)
=


µ(1− 3µ)
2(1− µ)

−µ

1− 3
2µ 0


The determinant ∆ = µ(1− 3

2µ) > 0 because µ < 2/3. The trace is

τ =
µ(1− 3µ)
2(1− µ)

which is positive if µ < µc = 1/3. In this case, the rest point (x∗, y∗) is a repeller. If
µ ≥ µc this rest point is a global attractor and well show there are no nontrivial periodic
orbits. When µ = µc = 1/3 we have xc = 1/4, yc = 9/16, ∆c = 1/6 and τc = 0 so that
the eigenvalues of J(xc, yx) are ±

√
∆c. The real part of the eigenvalues are <e τ/2 which

strictly decrease as τ increases through µc. Thus (x∗, y∗) is a stable for µ > µc. We shall
show that it is also stable for µ = µc = 1/3, so that a supercritical Hopf bifurcation occurs
at µc.

It turns out that we may use Dulac’s Criterion at µ = µc. Consider the multiplier

h(x, y) =
(

1 + 2x
2x

)
yα−1

with α = 1/2(1− µ). Then at any point in the first quadrant

div(hf, hg) =

=
∂

∂x

[(
1 + 2x

2x

)
yα−1x

(
1− x− 2y

1 + 2x

)]
+

∂

∂y

[(
1 + 2x

2x

)
yα

(
2x

1 + 2x
− µ

)]
=

∂

∂x

[(
(1 + 2x)(1− x)

2
− y

)
yα−1

]
+

∂

∂y

[(
1− (1 + 2x)µ

2x

)
yα

]
=
(

1
2
− 2x

)
yα−1 + α

(
1− (1 + 2x)µ

2x

)
yα−1

=
yα−1

2x

(
x− 4x2 + α(2x− (1 + 2x)µ)

)
=
yα−1

2x

(
−4x2 + [1 + 2α(1− µ)]x− αµ

)
=
yα−1

2x

(
−4x2 + 2x− µ

2(1− µ)

)
=
yα−1

2x

(
−
[
2x− 1

2

]2
+

1− 3µ
4(1− µ)

)

The parenthesis is nonpositive for µ ≥ 1/3 and possibly zero only on the line x = 1/4. Thus
there are no periodic trajectories in the first quadrant for these µ since the integrals of the
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divergence over the region inside such trajectories wouldn’t be zero as they must be by the
divergence theorem.

To argue that there is a nontrivial closed orbit for µ < µc = 1/3 we use the Poincaré
Bendixson Theorem. Since (x∗, y∗) is unstable then, there is a tiny ellipse E about (x∗, y∗)
through which the flow is outgoing. We claim that a trapping region is a pentagon P
bounded by the curves y = 1/(2µ), x = 0, y = 0, x = 1 and x + y = 1/2µ + x∗. For
y = 1/2µ and 0 ≤ x ≤ x∗ we have ẏ ≤ 0 since 2x/(1 + 2x) ≤ µ. Since ẋ = 0 when x = 0
and ẏ = 0 when y = 0, no flow passes through the axes. For x = 1 we have ẋ ≤ 0 so flow
enters P along this side. Finally flow is incoming through the fifth side since

ẋ+ ẏ = x− x2 − µy = (1 + µ)x− x2 − µ

(
1
2µ

+ x∗
)
≤ (1 + µ)2

4
− 1

2
≤ 4

9
− 1

2
< 0

where we have used ax− x2 ≤ a2/4, 0 < µ < 1/3 and 0 < x∗ ≤ 1/4. We have shown that
the annular region P − E is a trapping region because all flow is either inward or along the
boundary. Its only rest points are at (0, 0) and (0, 1) on the boundary. Both of these rest
points have their stable manifolds along the axes. We cannot apply Poincaré Bendixson
yet, because there should be no rest points on the boundary for the Theorem to apply.

Let us now describe a smaller trapping region without boundary rest points. Start at a
point y0 = 1/2µ and 0 < x0 < x∗. Its trajectory γ goes southwest following near the y-axis
until it crosses the parabola 2y = (1− x)(1 + 2x) vertically and then southeast and comes
close to the origin for x0 small enough by continuous dependence, gets turned along the
positive x-axis since the origin is a saddle and follows along the x axis until it crosses x = x∗.
This trajectory avoids the axes since different trajectories can’t touch. From that point on
it travels northeast so must encounter the paraFbola 2y = (1 − x)(1 + 2x) again which it
crosses upward. From that point on it travels northwest. It can’t cross x+ y = 1/2µ+ x∗

nor y = 1/2µ. Therefore it recrosses x = x∗ from right to left at a point below y = 1/2µ at
time t1. Define a region R bounded by γ from t = 0 to t = t1, the segment from γ(t1) to
y = 1/2µ along the line x = x∗, and the segment along y = 1/2µ from x = x∗ to x = x0.
Then remove the ellipse E to complete R. There are no rest points along this new closed
region R. Applying the Poincaré Bendixson Theorem tells us that any trajectory starting
inside R tends to a limit cycle, which is a closed trajectory inside R.

14. Consider a pendulum driven by constant torque and damped by air resistance were α, F > 0
are dimensionless parameters in the nondimensionalized equation. Find and classify the rest
points in the (θ, ν) phase plane. If you find a center in the linearization about a rest point,
determine whether it is a center for the nonlinear equations, or a stable/unstable spiral.
For F > 1 show that the system has a nontrivial limit cycle. (regard the phase plane as a
cylinder). then prove that this limit cycle is unique. regarding t as a function of θ, find the
differential equation for uu = 1

2ν
4. Solve this equation in the regime ν > 0 andf find an

exact formula for the limit cycle when F > 1. Decreasing F while keeping α fixed, show that
the limit cycle undergoes a homoclinic bifurcation at some critical value Fc(α), and give an
exact formula for the bifurcation curve. [Strogatz problem 8.5.5]

θ̈ + αθ̇|θ̇|+ sin θ = F

Writing this as a system.

θ̇ = ν

ν̇ = F − sin θ − αν|ν|

Rest points have ν = 0 so sin θ = F . This has two roots 0 < θ− ≤ π/2 ≤ θ+ < π when
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Figure 10: 3D-XplorMath c© plots: µ = .3 blue limit cycle, µ = .367 stable rest point.

0 < F ≤ 1, and none for F > 1. The Jacobian is

J =

 0 1

− cos θ −2α|ν|


The trace is 0 at the rest points and the determinant is cos θ±. Thus (θ+, 0) is a saddle and
(θ−, 0) is a center in the linearization.

To see the nonlinear nature at (θ−, 0), consider the Liapunov Function

V (θ, ν) =
1
2
ν2 − cos θ − Fθ

Note that the partial derivatives Vθ(θ−, 0) = sin θ− − F = 0 and Vθθ(θ−, 0) = cos θ− > 0 so
that V has a strict local minimum at (θ−, 0). Its derivative with respect to time is

V̇ = νν̇ + (sin θ − F )θ̇ = ν(F − sin θ − αν|ν|) + (sin θ − F )ν = −α|ν|3 ≤ 0

Noting that when ν = 0 then ν̇ 6= 0 unless θ = θ− so V is strictly decreasing in the
neighborhood of (θ0, 0) for flows starting away from rest points. Thus the nonlinear behavior
is a stable spiral in the neighborhood of (θ−, 0).

In case of F > 1 we show that the system has a periodic solution. Let us show that the
Poincaré Map has a fixed point, which implies that there is a periodic solution. Denote the
solution curve with initial conditions (0, ν0) by (θ(t, ν0), ν(t, ν0)). We shall show that if ν0
is in an interval [ν1, ν2], then the solution extends to θ(T (ν0); ν0) = 2π where T (ν0) > 0 is
the smallest time that the solution crosses θ = 2π. Then the Poincaré Map is defined by
P (ν0) = ν(T (ν0), ν0), the ν-value at the first crossing point.
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We first construct a trapping region 0 < ν1 ≤ ν ≤ ν2. Since F − 1 > 0 there is ν1 > 0 so
small that F − 1 > αν2

1 . Then if ν = ν1,

ν̇ = F − sin θ − αν|ν| ≥ F − 1− αν2 ≥ F − 1− αν2
1 > 0.

Thus all trajectories may cross ν = ν1 from below but cannot cross from above. Similarly,
let ν2 > ν1 be so large that F + 1 < αν2

1 . Now if ν = ν2

ν̇ = F − sin θ − αν|ν| ≤ F + 1− αν2 = F − 1− αν2
2 < 0.

thus flow across the upper line ν = ν2 is strictly downward. Thus we have a trapping
region. It implies that if ν0 ∈ [ν1, ν2] that ν2 ≥ θ̇(t, ν0) = ν(t, ν0) ≥ ν1 > 0 so that θ(t) is
increasing at a uniformly positive but bounded rate. Also ν(t, ν0) remains bounded. This
means that the solution exists long enough to exit the box [ν1, ν2] × [0, 2π] through the
right boundary at a finite time T (ν0). Since the equation vector field depends smoothly on
(ν, θ), by continuous dependence of ODE’s, T (ν) and (θ(t; ν), ν(t; ν)) are continuous for all
possible (θ, ν) ∈ ∪ν∈[ν1,ν2]{ν} × [0, T (ν)]. Thus the Poincaré Map is a continuous function
that maps [ν1, ν2] to itself. By the fixed point theorem, there is a point nu∗ ∈ [ν1, ν2]
such that P (ν∗) = ν∗. But this implies that the trajectory ν(t, ν∗) is 2π-periodic and
(θ(t, ν∗), ν(t, ν∗)) is a closed trajectory on the cylinder.

To see that the limit cycle is unique, observe that there is no rest point in ν 6= 0 because
θ̇ = ν doesn’t vanish and for ν = 0, θ̇ = F − sin θ > 0 doesn’t vanish either. It follows
that there are no nontrivial closed trajectories in the (θ, ν) plane becuase such would have
to enclose a rest point by index theory. The only other option is if the trajectory wraps
around the cylinder. Because flow is upward through ν = 0, no wrapping closed trajectory
may cross the ν-axis since because it cannot return to ν < 0 to close up. And no closed
wrapping cycle exists in ν < 0 because ν̇ > 0 there so ν(t, ν0) cannot be periodic. Thus
every closed wrapping trajectory satisfies ν > 0. To argue uniqueness, suppose there are
two closed wrapping trajectories ν(t) and ν̃(t). Because ν̇ > 0, we may think of both curves
as functions of θ. Let us use the energy method in the text. Consider E = 1

2ν
2 − cos θ.

Then
dν

dθ
=
ν̇

θ̇
=
F − sin θ − αν|ν|

v
(5)

The energy returns after one circuit so integrating on a closed trajectory,

0 = ∆E =
∫ 2π

0

dE

dθ
dθ =

∫ 2π

0

ν
dν

dθ
+ sin θ dθ =

∫ 2π

0

F − αν2 dθ

So for every closed trajectory
2πF
α

=
∫ π

0

ν2 dθ.

Because two trajectories can’t cross, one is above the other, say ν(θ) < ν̃(θ). But this
implies that the integral is different for the two trajectories, so both can’t equal the left side
constant.

Now let us assume that F > 1 and find the solution explicitly. In the region ν > 0 we have
θ̇ = ν > 0 so that by the Implicit Function Theorem, we may parameterize by ν(θ). Let
u = 1

2ν
2. We have from (5)

du

dθ
= ν

dν

dθ
= F − sin θ − αν|ν| = ν̇ = θ̈

Thus the quadratically damped pendulum equation becomes for ν > 0

du

dθ
+ 2αu = F − sin θ
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Multiplying by an integrating factor,

d

dθ

(
e2αθu

)
= e2αθ

(
du

dθ
+ 2αu

)
= Fe2αθ − e2αθ sin θ

Hence

e2αθu(θ)− u(0) =
F

2α
(
e2αθ − 1

)
+
e2αθ (− cos θ + 2α sin θ) + 1

1 + 4α2

so

u(θ) = u(0)e−2αθ +
F

2α
(
1− e−2αθ

)
+

2α sin θ − cos θ + e−2αθ

1 + 4α2

The limiting cycle is what remains when the transients are dropped, namely

u∗(θ) =
F

2α
+

2α sin θ − cos θ
1 + 4α2

=
F

2α
+

sin(θ − ψ)√
1 + 4α2

Fixing α and letting F decrease still gives the right explicit solution as long as ν > 0. This
breaks down when F cant keep u > 0. Let ψ(α) be the phase angle

(cosψ, sinψ) =
(

2α√
1 + 4α2

,
1√

1 + 4α2

)
in other words tanψ = 2α so ψ = Atn 2α. The critical value is

Fc(α) =
2α√

1 + 4α2

In the range Fc < F < 1, the system is bistable because the stable periodic cycle and the stable
rest point coexist. The upward unstable manifold of the saddle does not spiral into the stable rest
point, but rather asymptotes to the periodic cycle. As F decreases to Fc(α), the periodic cycle
u∗ merges with the homoclinic orbit from the saddle (θ+, 0) that connects its unstable manifold
to its stable manifold and the system loses its periodic cycle. As F continues to decrease, the
upward unstable manifold of the saddle now spirals into the stable rest point instead of tending
to a limit cycle. Thus a homoclinic bifurcation occurs.
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Figure 11: 3D-XplorMath c© plots: .709 = Fc < F < 1 and .70F < Fc, α = .5.
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Figure 12: R c©plot of stability diagram.
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