Math 5470 § 1. Second Midterm Exam Name: Golutions
Treibergs Mar. 31, 2016

1. Consider the system in polar coordinates. Show that there are numbers 0 < r1 < ro so that
ry < r < ry is a trapping region. Show that the system has a montrivial periodic trajectory.

7 =r(3 —2r% + r2sin% )

0=1
Using the fact that 0 < sin? 0 < 1 we find that

r(3 —2r%) <7 =7r(3—2r* 4+ r*sin?0) < r(3 —r?)

It follows that if one takes any 0 < r; < \/g then 7 > 0 whenever r = r; and flow is

outward through the circle r = ;. If one takes any v/3 < ro then 7 < 0 whenever r = ry so
flow is inward through the circle » = r5. Thus the annulus r; < r < ry is a trapping region.

Also, observe that 0 # 0 for all > 0 so that there are no fixed points in the annulus. Since
the vector field is smooth, we may apply the Poincaré-Bendixson Theorem, which asserts
that any trajectory starting in the trapping region tends to a nonconstant limit cycle, which
is a nontrivial periodic trajectory in the trapping annulus.

2. Consider the system in polar coordinates. The system undergoes a bifurcation as the pa-
rameter p > 0 passes the critical value p.. Find the value and sketch the phase portraits
for < pic, p = pe and p > pe. What kind of bifurcation is this?

F=r(l—r?

=1+ pcosd

The zeros of the 7* = r(1 —r?) occur at r = 0 and r = 1. The origin is an unstable rest point
and the circle r = 1 is an invariant set. Since # >0in 0 <r <1 and 7 < 0if 1 < r we see
that the r = 1 is an attractive rest point. Flows starting away from the origin or unit circle
tends toward the unit circle. § = 1+ pcos > 1 — p for all 0 so (t) is strictly increasing for
0 < u < 1 and, except for the origin, the flow approaches the limit cycle r = 1. At u =1,
an infinite time bifurcation occurs: 6(t) stops increasing at one point where 1 + cosf = 0
or § = 7. For p > 1 there are two rest points 0 = ¢+ with 0 < ¢_ < 7 < ¢4 which solve

0=1+4 pcosb, namely, ¢4 = arccos(1/p).

Then 6 < 0 for ¢ < 60 < ¢4 and 6 > 0 otherwise. Radially flow approaches the r = 1
circle but # < 0 for initial angles ¢_ < €y < ¢4 and positive otherwise. This makes
(r,0) = (1,¢_) a stable node and (1, ¢ ) an unstable saddle.






3. Answer the following questions about periodic trajectories.

(a) Show that this equation has no nontrivial periodic solutions.

i+z?i+x=0.

Viewing this as a spring equation with nonnegative drag depending on velocity, one
expects that energy decay under the flow. Written as a system

T=y
j=—z—ay?

Computing

d d 2 2
@Ezﬁm ;—y =xi+yy=ay+yl—z—xy?) = —2%* <0.

If (x,y) # (0,0), the flow does not stop at = 0 because & = y # 0 nor at y = 0
because then y = —z # 0. Otherwise E < 050 the energy is strictly decreasing function
of time. It follows that there cannot be nontrivial periodic trajectories because the
energy cannot be periodic.

Show that this equation has a nontrivial periodic solution.
i+a(@)?+x=0.

Written as a system

=y = f(z,y)
y=—z—a%y = g(z,y)
This system is reversible because f(x,—y) = —f(x,y) is odd in y and g(x,—y) =
g(z,y) is even in y. Its only zero is when 0 = f(z,y) = y hence y = 0 and when
0=g(z,0) = —z so x = 0 as well. Linearizing at zero we find
0 1 0 1
J(0,0) = -
-1 -2y —a? -1 0
(=,9)=(0,0)

which is a matrix whose eigenvalues are +i. The origin is a center for the linearized
equation. By the theorem about centers for reversible systems, because the vector field
is smooth and because the reversible system has centers for the linearization at a rest
point, then the nonlinear system, too, has centers at the rest point. In particular, the
origin in this problem is surrounded by closed nontrivial trajectories.



4. The system undergoes a bifurcation as the parameter p passes the critical value p.. Find
the value. Find the critical points and determine their stability. Sketch the phase portraits
for < pic, p = pe and @ > pe. What kind of bifurcation is this?

i=—x+y+ylp—uy) = f(z,y)
y=y(p—y) =g(z,y)

The rest points are at solutions of 0 = g(z,y) = y(u — y) whichisat y =0 or y = p. If
y =0 then 0 = f(2,0) = —x sox =0. If y = p then 0 = f(z,u) = —x + p so z = pu.
Computing the Jacobian we find

-1 1+p—2y -1 14p -1 1—p
J(x,y) = ; J(0,0) = s T (g, ) =

0 w—2y 0 " 0 —u

Y and (1). At

(1, 1), the eigenvalues are —1 and —p with corresponding eigenvectors ((1)) and (}) Thus
for p > 0, the rest point (0,0) is a saddle and the rest point (u,u) is a stable node. The
points swap roles if ;4 < 0 when the rest point (0,0) is a stable node and the rest point
(u, ) is a saddle. Thus a transcritical bifurcation occurs at (0,0) when p = p. = 0.
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Figure 2: Plots with g = .5,0, —.5 using 3D-XPlorMath(c)

At (0,0), the eigenvalues are —1 and p with corresponding eigenvectors (




5. Consider the system

(a)

f(z,y)

i=pr—y+(p+1)z’—zy 7
y=x+a =g(,y)

The system undergoes a Hopf Bifurcation when the parameter u passes a critical value
te. What is this critical value? What are the rest points? Can you tell if the bifurcation
18 subcritical or supercritical?

The rest points satisfy 0 = g(x,y) = z(1+ ) so x = 0 or x = —1. If 2 = 0 then
0 = f(0,y) = —y implies y = 0. If x = —1 at a rest point then 0 = f(—1,y) =
—u—y~+ (u+1)+y =1 has no solution. Thus (0,0) is the only rest point for all u.

Computing the Jacobian we find

w21+ pwe—-—y —-1—= o —1
J(z,y) = ;o J(0,0)=

1422 0 1 0

Its characteristic equation is
(L=N(N)+1=X2—pA+1=0

whose solutions are

N hEVH A
—L=vE =

For |u| < 2, as u crosses u. = 0, the eigenvalues are complex with real part u/2.
Thus the Hopf bifurcation occurs at p. = 0 when the conjugate eigenvalues cross the
imaginary axis. If —2 < p < 0, the origin is a stable spiral if and if 0 < p < 2, an
unstable spiral. For u < —2, the origin is a stable node (both eigenvalues are negative)
and if 4 > 2 and an unstable node (both eigenvalues are positive).

Consider the energy. For trajectories

d . .

P =aityg=a(pr —y+ (p+ Da® —ay) +y(e +27) = pa® + (1+ p)a’

so at least if 4 = —1 the energy is strictly decreasing (the flow doesn’t stop when
2z = 0 because then & = —y) hence no periodic solutions. This suggests that periodic
solutions occur when p > 0 when the origin is unstable. Thus the bifurcation is
supercritical.

What is the index at the origin of the vector field in part (a)? Does it depend on p?
Why? [Hint: Does it help you to know that a Hopf Bifurcation occurs?]

We know that a Hopf Bifurcation occurs, so that for some p > 0 there is a periodic
solution C' that surrounds the origin. Since there are no rest points other than the
origin, the index of C gives the index at the origin. Because the vector field is tangent
to C, I = 1, which is the index at the origin for such pu.

The index is the same for every pu. We know that the origin is the only rest point
for any p so the vector field never vanishes away form the origin, and we know that
the vector field varies continuously as u is varied. Hence the total angle change of the
vector field on a fixed loop C' around the origin varies continuously. But as the angle
change is an integer multiple of 27, it has to be constant. The index is confirmed for
any p such that |p| > 2 since the origin is a node or for any 0 < |u| < 2 when the
origin is a spiral, both of whose index is one.



