
Math 5470 § 1.
Treibergs

Final Exam Name: Practice Problems
April 26, 2016

1. Give an example of a system which simultaneously posseses the following two properties.

(a) it is dissipative, it i.e., any volume in phase space contracts under the flow;

(b) “almost all” trajectories go to infinity as time t→∞.

Consider the linear system

ẋ = ax

ẏ = by

the system is dissipative if the divergence of the vector field is everywhere negative. Com-
puting

div(ax, by) = a+ b

The solution of the system with (x(0), y(0)) = (x0, y0) is

x(t) = x0e
at, y(t) = y0e

bt

For almost all solutions to tend to infinity, we need for almost all (x0, y0) that

|(x(t), y(t))|2 = x20e
2at + y20e

2bt →∞ as t→∞

Thus we need a + b < 0 and one or the other a > 0 and x0 6= 0 or b > 0 and y0 6= 0. For
example, taking a = 1, b = −2 we have a+ b = −1 so dissipative and

|(x(t), y(t))|2 = x20e
2t + y20e

−4t →∞ as t→∞

whenever x0 6= 0, which is almost everywhere.

2. What does it mean that the Lorenz System exhibits sensitive dependence on initial condi-
tions?What is the Lorenz map? How did Lorenz argue that the attractor in his system is
not just one long stable periodic orbit?

“Sensitive dependence on initial conditions” means that if a trajectory starts on the attractor
there is another trajectory that starts very close to it such that the two will rapidly diverge
from each other, and thereafter have totally different futures. More precisely, after the
transients have decayed so that x(t) is close to the attractor at time t, consider the nearby
point x(t) + δ(t) where |δ(t)| = δ0 is very small. Sensitive dependence means that it is true
that there is δ(0) and c, λ > 0 such that

|δ(t+ s)| ≥ cδ0eλs

over a range 0 ≤ s ≤ S. Numerical studies show that for the Lorenz System, λ, the Liapunov
Exponent is about 0.9. The ln |δ(t + s)| actually oscillates about a line of slope λ. This
growth rate stops when the oscillations reach the scale of the trapping ball.

Let zn denote consecutive relative maxima of the z component of a solution to the Lorenz
Equations. Lorenz observed that when many (zn, zn+1)’s are plotted on the plane, then the
picture is almost that of a curve zn+1 = f(zn). The Lorenz map is the function f : R→ R.
The map is tent-shaped with slope |f ′(z)| > 1 at all z (except at the kink where f ′ does
not exist.)
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Lorenz’ argument that there are no periodic stable orbits goes as follows. Suppose that
there is a periodic orbit (x(t), y(t), z(t)) that has k maxima of z(t) in a period. He argues
that it cannot be stable. Thus, assuming the Lorenz map tells the story, we have

z1 = f(z0), z2 = f(z1), · · · z0 = zk = f(zk−1).

Lets check the stability of this orbit. The maximum at a perturbation z1+η1 is approximated
by the linearization

z1 + η1 = f(z0 + η0) ≈ f(z0) + f ′(z0)η0

zj+1 + ηj+1 = f(zj + ηj) ≈ f(zj) + f ′(zj)ηj

so that ηj+1 ≈ f ′(zj)ηj for all j. It follows that

ηk ≈

(
k−1∏
i=0

f ′(zi)

)
η0

so in norm, if b = min{|f ′(z0)|, |f ′(zi)|, . . . , |f ′(zk)|} > 1 then for all `,

|η`| ≈

(
`−1∏
i=0

|f ′(zi)|

)
|η0| ≥ b`|η0|

which proves that the periodic orbit is unstable.

3. Consider the iterated map with parameter −∞ < µ <∞

xn+1 = µxn + 2

Does it exhibit sensitive dependence on initial conditions? Is it chaotic?

Suppose that yn is another solution with y0 close to x0. Consider the equation for the
difference

wn+1 = xn+1 − yn+1 = (µxn + 2)− (µyn + 2) = µ(xn − yn) = µwn

whose solution is
wn = (x0 − y0)µn

It follows that the difference grows exponentially or has sensitive dependence to initial
conditions if |µ| > 1. In fact we can write an explicit solution of the difference equation. If
µ = 1 we have

x1 = x0 + 2, x2 = x1 + 2 = x0 + 4, . . . xn = x0 + 2n

Otherwise µ 6= 1 and

x1 = µx0 + 2, x2 = µx1 + 2 = µ2x0 + 2µ+ 2, x3 = µ3x0 + 2µ2 + 2µ+ 2, . . .

Hence we have a closed formula

xn = µnx0 +
2(1− µn)

1− µ
= fn(x0)
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To see that it is correct, we check

x0 = µ0x0 +
2(1− µ0)

1− µ
= x0 + 0

µxn + 2 = µ

(
µnx0 +

2(1− µn)

1− µ

)
+ 2 = µn+1x0 +

2µ(1− µn) + 2(1− µ)

1− µ

= µn+1x0 +
2(1− µn+1)

1− µ
= xn+1

Thus we see that if |µ| < 1 then xn → µ/(1−µ) converges as n→∞. If µ = −1 then xn is
periodic of period 2. Otherwise, if µ < −1 or µ ≥ 1, the solution tends to infinity, which is
regarded as converging to a point. Thus the motion is not chaotic: it converges to a point
or is periodic.

4. Suppose that y(x) satisfies the differential equation

ẏ = f(x, y)

where f(x, y) is a smooth function on the plane that satisfies f(x, a) ≥ 0 and f(x, b) ≤ 0
for all x. Suppose that a ≤ y(0) ≤ b. Show that the solution stays bounded a ≤ y(x) ≤ b for
all x, and thus exists for all x

If we can show the solution remains bounded, then the solution exists for all time because
the the only way it could have stopped at a finite time is if it had blown up. If a solution
remains bounded, then the local existence theorem tells us that a solution could be continued
beyond any x.

It remains to argue that if the solution exists on the interval 0 ≤ x ≤ T , then a ≤ y(x) ≤ b
for all 0 ≤ x ≤ T . Intuitively, y = a and y = b are lower and upper barriers. To show
y(x) ≤ b, if a solution crosses y = b from below then y is non-decreasing. However the
assumption is only that ẏ ≤ 0 which says only that it is non-increasing when y = b.

But if we knew the sharper inequality that f(x, b) < 0 for all x then the argument would
be complete. If y(x1) > b at some 0 < x1 ≤ T then there is a largest number x2 ∈ [0, x1)
such y(x) < b for all x < x2 and y(x2) = b. At this point the function is non-decreasing so
ẏ(x2) ≥ 0, which contradicts ẏ(x2) = f(x2, b) < 0.

Here is where analysis comes in. We perturb the equation so that it has stronger inequalities
at the barriers and then approximate the desired solutions by solutions of the perturbed
equations. This argument uses continuous dependence on a parameter. The modified
differential equation for parameter ε > 0 is

ẏε = f(x, yε) + ε(a+ b− 2yε) = f(x, yε; ε)

Note that f(x, a; ε) > 0 and f(x, b; ε) < 0. Thus by the strict inequality, we have a ≤
yε(x) ≤ b for all 0 ≤ x ≤ T . Now by continuous dependence, since f(x, y; ε) → f(x, y)
uniformly on [0, T ]× [a, b] as ε→ 0+ we have uniform convergence on 0 ≤ x ≤ T

y(x) = lim
ε→0+

yε(x)

which is in the interval [a, b] because all yε(x) are.

5. When the second order equation for small parameter 0 ≤ ε

ẍ+ εẋ+ x = 0 (1)
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is written as a system, we get

ẋ = y

ẏ = −x− εy

Take the positive x-axis as the Poincaré section. Find the corresponding Poincaré map.
[Prof. Balk’s final.]

The roots of the characteristic poynomial λ2 + ελ+ 1 = 0 are are

−ε± i
√

4− ε2
2

The general solution of (1) is

x(t) =

(
A cos

(√
4− ε2

2
t

)
+B sin

(√
4− ε2

2
t

))
e−

ε
2 t

Hence

x(0) = A; ẋ(0) = − ε
2
A+

√
4− ε2

2
B

Thus solution of the initial value problem x(0) = x0, ẋ(0) = y0 = 0 is

x(t) =

(
x0 cos

(√
4− ε2

2
t

)
+

εx0√
4− ε2

sin

(√
4− ε2

2
t

))
e−

ε
2 t

The solution returns to the section when
√

4− ε2
2

T = 2π or T =
4π√

4− ε2

Thus the Poincaré first return map for x0 ≥ 0 is

P (x0; ε) = x(T ) = x0 exp

(
− 2πε√

4− ε2

)
Note that ∂

∂εP (x0; 0) = −x0π
Perhaps Prof. Balk wanted to solve the Poincaré map perturbatively. In other words, the
solution would be a perturbation of ε = 0 equation. In this case, the ε = 0 solution for the
initial data (r, 0) and Poincaré map is

x(t) = r cos t; y(t) = −r sin t; P (r; 0) = x(2π) = r

Now consider an infinitesimal perturbation xε(t) = r cos t + ξ(t), yε(t) = −r sin t + η(t).
Plugging into the equations yields

ẋε = −r sin t+ ξ̇ = −r sin t+ η

ẏε = −r cos t+ η̇ = −r cos t− ξ − ε(−r sin t+ η(t))

Dropping quadratic terms in the perturbation results in the system

ξ̇ = η

η̇ = −ξ + εr sin t
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which is the resonantly forced harmonic oscillator

ξ̈ + ξ = εr sin t

Its solution for ξ(0) = η(0) = 0 is

ξ(t) =
εr

2
(sin t− t cos t)

Thus the Poincaré map up to first order is

P (r) = xε(2π) = r cos 2π + ξ(2π) = r − πrε

which is the same up to the first order in ε as the nonlinear solution.

6. Find and classify the fixed points of the map. For what value of the parameter r is there a
superstable fixed point?

xn+1 = x2n − rxn
The fixed points satisfy x = x2 − rx or

x = 0 or x = r + 1

f ′ = 2x − r. At zero, f ′(0) = −r which is stable if |r| < 1 and unstable if |r| > 1. At
x = r + 1, f ′(r + 1) = 2(r + 1) − r = r + 2. This fixed point is stable if |f ′(r + 1)| < 1 or
|r + 2| < 1 or −3 < r < −1. It is unstable if |r + 2| > 1. the remaining cases are marginal
and require further analysis.

The fixed points are superstable if f ′ = 0. At the origin, this occurs if r = 0 and at r + 1
this occurs if r = −2.

7. Consider the nonlinear system. Observe that γ(t) = (cos t, sin t, 0) is a periodic solution to
the system. Use a linearized analysis to determine whether this solution is stable.

ẋ = −y + xz2

ẏ = x+ yz2

ż = −z(x2 + y2)

We need to determine the eigenvalues of the linearized Poincaré map about γ. Take the
section Σ = {(x, y, z) : y = 0, x > 0}. Let us compute the variation equation as in Examples
8.7.3 and 8.7.4. Consider an infinitesimal perturbation of of the solution

(x, y, z) = (cos t+ ξ(t), sin t+ η(t), ζ(t))

where (ξ, η, ζ) are infinitesimal. Substituting

− sin t+ ξ̇ = − sin t− η + (cos t+ ξ)ζ2

cos t+ η̇ = cos t+ ξ + (sin t+ η)ζ2

ζ̇ = −ζ[(cos t+ ξ)2 + (sin t+ η)2]

Neglecting quadratic terms in the infinitesimals,

ξ̇ = −η
η̇ = ξ

ζ̇ = −ζ
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whose solution is

(ξ(t), η(t), ζ(t)) = (ξ0 cos t− η0 sin t, η0 cos t+ ξ0 sin t, ζ0e
−t)

Thus the perturbation of γ, (ξ0, 0, ζ0) ∈ Σ first returns to Σ at the perturbation of γ given
by the differential of the Poincaré map

DP [(1, 0)](ξ0, ζ0) = (ξ(2π), ζ(2π)) = (ξ0, e
−2πζ0)

The eigenvalues are λ = 1, e−2π, thus γ has inconclusive linearized stability: the norms of
both eigenvalues are not less than one nor both greater than one.

8. Using a Poincaré map, show that the system has at least two periodic solutions. Can you
determine their stability? Regard the equation as a vector field on the cylinder. Sketch the
nullclines and thereby infer the shape of certain key trajectories that can be used to bound
the periodic solutions. For instance, sketch the trajectory throught the point (t, θ) = (π2 ,

π
2 ).

[Strogatz 8.7.5]
θ̇ + sin θ = sin t

Write the forced equation as a system using x = t and y = θ

ẋ = 1 = f(x, y)

ẏ = sinx− sin y = g(x, y)

Now consider a shooting approach from the lines x = 0 to x = 2π. Denote the solution
starting at (0, y0) by (x(t), y(t)) so x(t) = t. The Poincaré map is P (y0) = y(2π). A periodic
solution satisfies P (y0) = y0. On the g = 0 nullcline,

0 = g(x, y) = sinx− sin y = 2 cos

(
x+ y

2

)
sin

(
x− y

2

)
whose solutions are the lines x− y = 2πk and x+ y = π + 2πj where k and j are integers
that divide the plane into a diagonal checkerboard in which g alternates signs.

The trajectory y1 with y1(π2 ) = π
2 has ẏ = 0 there and has ẏ < 0 in the neighboring squares

bounded by x − y = 0 and x + y = π. Thus for 0 ≤ x < π
2 , y1 ≥ π

2 because ẏ1 ≤ 0 and it
cannot cross y = π−x because it would require ẏ1 ≤ −1 but g = 0 on this curve. It follows
that π

2 ≤ y1(0) ≤ π. By the same token, for π
2 ≤ x ≤ 2π we have y1(x) ≤ π

2 because ẏ1 < 0
and it cannot dip below y = π − x because to cross it would need ẏ1 ≤ −1 but g = 0 on
this curve. If y1 crosses y = x− 2π at some 3π

2 ≤ x2 ≤ 2π, then −π2 ≤ y1 ≤ x− 2π because
ẏ2 ≥ 0 for x2 ≤ x ≤ 2π and it cannot cross y = x− 2π from below because it would require
ẏ1 ≥ 1 but g = 0 there. The upshot is that −π2 ≤ y1(2π) ≤ π

2 .

Observe that the system is invariant under the transformation

x→ x+ π, y → −y

Thus there is a solution y2 with y2( 3π
2 ) = −π2 which satisfies −π ≤ y2(π) ≤ −π2 by

translation. In particular y2(π) < y1(π) so y2(x) < y1(x) for all 0 ≤ x ≤ 2π. Arguing as
before, y2 cannot cross either line y = x− π nor y = π − x and is increasing in the squares
to the left and right of ( 3π

2 ,
π
2 ). Thus it satisfies − 3π

2 ≤ y2 ≤ −π2 and −π2 ≤ y2(2π) ≤ 0.
In particular, the interval [y2(2π), y1(2π)] ⊂ [−π2 ,

π
2 ] ⊂ [y2(0), y1(0)]. Now we can define

a Poinccaré map P : [y2(0), y1(0)] → [y2(0), y1(0)] by solving the system with x(0) = 0,
y(0) = y0 to get P (y0) = y(2π). It takes

P : [y2(0), y1(0)]→ [y2(2π), y1(2π)] ⊂ [y2(0), y1(0)]
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because solutions can’t cross y1 or y2. P is continuous by continuous dependence on initial
conditions. By the fixed point theorem for continuous self-maps of compact intervals, there
is a fixed point y∗ ∈ [y2(0), y1(0)] such that P (y∗) = y∗ which corresponds to a 2π-periodic
solution. By 2π periodicity in y, all y∗ + 2πk for integers k are also solutions.

A second family of periodic solutions can be found by considering the two solutions y1(x) and
y3(x) = y2(x) + 2π. Because y1(π) ≤ π ≤ y3(π), we have y1(x) ≤ y3(x) for all 0 ≤ x ≤ 2π.
This time [y1(0), y3(0)] ⊂ [π2 ,

3π
2 ] ⊂ [y1(2π), y3(2π)] so we construct a backward Poincaré

map
Q : [y1(2π), y3(2π)]→ [y1(0), y3(0)] ⊂ [y1(2π), y3(2π)]

by using the solution with x(0) = 2π so x(−2π) = 0 and y(0) = y2π and setting Q(y2π) =
y(−2π). This gives another continuous map from a compact interval to itself, thus has a
fixed point y∗∗ ∈ [y1(0), y3(0)] such that Q(y∗∗) = y∗∗. This gives another periodic solution
family y∗∗(x) + 2π` for integers `.

Figure 1: Several trajectories. Periodic solutions have y∗ ≈ 2.52 and y∗∗ ≈ 5.18.

9. Consider the system of coupled oscillators on the torus with parameters ω1, ω2,K1,K2 > 0

θ̇1 = ω1 +K1 sin(θ2 − θ1)

θ̇2 = ω2 +K2 sin(θ1 − θ2)

Show that the system has no fixed points. Find a conserved quantity for the system. Hint:
solve for sin(θ2 − θ1) in two ways. Show that if K1 = K2, the system can be non-
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dimensionalized to

θ′1 = 1 + a sin(θ2 − θ1)

θ′2 = ω + a sin(θ1 − θ2)

Find the winding number ν analytically. Hint: evaluate the long time averages 〈θ′1 + θ′2〉
and 〈θ′1 − θ′2〉. [Strogatz 8.6.2.]

ν = lim
τ→∞

θ1(τ)

θ2(τ)
, 〈g〉 = lim

T→∞

1

T

∫ T

0

g(τ) dτ

This was a homework problem. It’s included here because noone found a conserved quantity.

Solving θ̇1 = 0 and θ̇2 = 0 for sinφ where φ = θ1 − θ2 we find

sin(φ) =
ω1

K1
= − ω2

K2

which has no solution because a negative number can’t equal a positive one. The same
equation at general points says

sin(φ) =
ω1 − θ̇1
K1

=
θ̇2 − ω2

K2

or
K2θ̇1 +K1θ̇2
K2ω1 +K1ω2

= 1

whose solution is
K2θ1(t) +K1θ2(t)

K2ω1 +K1ω2
= t+ t0

where
K2θ1(0) +K1θ2(0)

K2ω1 +K1ω2
= t0.

The other easily obtained equation is

φ̇ = θ̇1 − θ̇2 = ω1 − ω2 − (K1 +K2) sinφ

This equation may be explicitly integrated using the u = tan(θ/2) substitution. However,
we have often discussed the solution but by graphical means. Let us denote its solution
from φ(0) = φ0 by

φ(t; φ0)

It converges to a fixed point if |ω2 − ω1| ≤ K1 + K2 and grows linearly otherwise. In
particular φ(t; φ0) is defined for all −∞ < t <∞. We regard (T, P ) as new coordinates of
the (θ1, θ2) plane where

T =
K2θ1 +K1θ2
K2ω1 +K1ω2

, P = θ1 − θ2

The trajectory starting at (t0, φ0) of the system in these coordinates is

T (t) = t; P (t) = φ(t− t0; φ0)

Such trajectories foliate the whole plane.

The invariant is easily described: we take the P coordinate of the trajectory through the
point (θ1, θ2) where it crosses the line T = 0. It is unchanged for any other point on the
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trajectory, thus is an invariant of the flow. Note that it is defined on the plane and not on
the torus. Analytically it is

V (θ1, θ2) = φ

(
− K2θ1 +K1θ2
K2ω1 +K1ω2

; θ1 − θ2
)

To check that it is invariant under the flow, let us use the semigroup property

φ(τ + s; φ0) = φ(τ ; φ(s; t0, φ0))

Thus for any point on the integral curve (θ1(s), θ2(s)) starting from (θ1(0), θ2(0)) we have

V (θ1(s), θ2(s)) = φ

(
−K2θ1(s) +K1θ2(s)

K2ω1 +K1ω2
; θ1(s)− θ2(s)

)
= φ

(
−s− K2θ1(0) +K1θ2(0)

K2ω1 +K1ω2
; φ(s; θ1(0)− θ2(0))

)
= φ

(
−K2θ1(0) +K1θ2(0)

K2ω1 +K1ω2
; θ1(0)− θ2(0)

)

which doesn’t depend on s.

To see the non-dimensionalization if K = K1 = K2, we divide both equations by ω1

1

ω1
θ̇1 = 1 +

K

ω1
sin(θ2 − θ1)

1

ω1
θ̇2 =

ω2

ω1
+
K

ω1
sin(θ1 − θ2)

which does the trick with a = K/ω1, ω = ω2/ω1 and τ = ω1t.

To find the winding number,

ν = lim
τ→∞

θ1(τ)

θ2(τ)
=

limτ→∞
θ1(τ) + θ2(τ)

τ
+ limτ→∞

θ1(τ)− θ2(τ)

τ

limτ→∞
θ1(τ) + θ2(τ)

τ
− limτ→∞

θ1(τ)− θ2(τ)

τ

Observe that
θ′1 + θ′2 = 1 + ω

so that
θ1(τ) + θ2(τ) = (1 + ω)τ + c1.

Thus

lim
τ→∞

θ1(τ) + θ2(τ)

τ
= ω + 1

Also observe that

φ′ = θ′1 − θ′2 = 1− ω − 2a sin(θ1 − θ2) = 1− ω − 2a sin(φ) = f(φ; a, ω)

By the Fundamental Theorem of Calculus

θ1(τ)− θ2(τ)− θ1(0) + θ2(0)

τ
=

1

τ

∫ τ

0

φ′(s) ds =
1

τ

∫ τ

0

1− ω − 2a sinφ(s) ds
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In case |1 − ω| ≤ 2a, the solution φ(τ ;φ0) converges to a fixed point. In particular, the
vector field f(φ(s); a, ω) tends to zero as φ(s) tends to the fixed point so

lim
τ→∞

θ1(τ)− θ2(τ)

τ
= 〈1− ω − 2a sinφ(s)〉 = 0.

Thus, in the |1− ω| ≤ 2a case there is phase-locking

ν =
1 + ω + 0

1 + ω − 0
= 1.

In case |1 − ω| > 2a, the solution φ(s) is periodic. It revolves a total angle 2π over one
period S, whose duration is (p. 108)

S =

∣∣∣∣∫ 2π

0

ds

dφ
dφ

∣∣∣∣ =

∣∣∣∣∫ 2π

0

1

1− ω − 2a sinφ
dφ

∣∣∣∣ =
2π√

(1− ω)2 − 4a2

Thus φ(s) = sgn(1 − ω)2π/S s + g(s) where g is a bounded (oscillatory) function and the
sign gives the direction of the flow. It follows that

lim
τ→∞

θ1(τ)− θ2(τ)

τ
= lim
τ→∞

φ(τ)

τ
= sgn(1− ω)

2π

S
= sgn(1− ω)

√
(1− ω)2 − 4a2.

In case |1− ω| > 2a,

ν =
1 + ω + sgn(1− ω)

√
(1− ω)2 − 4a2

1 + ω − sgn(1− ω)
√

(1− ω)2 − 4a2
.

10. For the given system in the plane,

ẋ = y

ẋ = x− 2x3 + y(x2 − x4 − y2)

(a) Draw the phase portrait.

(b) What are the attracting sets and attractors for this system of differential equtions?
[Hint: consider V (x, y) = 1

2 (x4 − x2 + y2).]

(c) Does the attractor have sensitive dependence on initial conditions? [from Clark Robin-
son, An Introduction to Dynamical Systems, Continuous and Discrete, Pearson Pren-
tice Hall, 2004. p.287.]

The fixed points are y = 0 and solutions of x(1− 2x2) = 0 or x = 0,±2−1/2. The Jacobian
is

J =

 0 1

1− 6x2 + 2xy − 4x3y x2 − x4 − 3y2


so

J(0, 0) =

0 1

1 0

 , J

(
0,± 1√

2

)
=

 0 1

−2 1
4


which is a saddle and an unstable spiral.

We have
V̇ = −2y2V (x, y)
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Figure 2: Phase portrait using 3D-XplorMath c©.

so that level sets of V (x, y) = 0 are solutions. They give two homoclinic orbits H± in the
shape of a bow tie on the left and right of the origin. Let I± be the closed insides of the
bows. Let Q be the closed outside. Let α = 2−1/2. Then all of these sets are invariant for
forward and backward flows

R2, Q, I+, I−, I+ ∪ I−, H+, H−, H+ ∪H−, {(0, 0)}, {(α, 0)}, {(−α, 0)},
{(0, 0), (−α, 0)}, {(0, 0), (α, 0)}, {(−α, 0), (α, 0)}, {(0, 0), (−α, 0), (α, 0)}

Sets like {(x, y) : V (x, y) ≤ 1
2} are forward invariant sets because the flow for points with

V > 1
2 decreases V . To be an attractor, it has to attract a neighborhood and be minimal

with respect to these properties. Because V < 0 inside I±, the forward flow is outward
away from (±α, 0). Thus an open set attracted by H+ ∪H− is U = R2 − {(−α, 0), (α, 0)}.
Because V > 0 outside I±, the forward flow is in toward I+ ∪ I−. Thus the following of
these attract a neighborhood

R2, Q, I+ ∪ I−, H+ ∪H−

For example, the sets I+ or H+ by themselves do not attract points of I− to the left of
but arbitrarily close to the origin. An attractor is minimal with respect to these properties.
Thus the only attractor is H+ ∪H−.

To be chaotic, it must have sensitive dependence on initial conditions. Let us consider an
alternative definition of sensitive dependence, due to Robinson.

Definition 1. A system ẋ = F(x) is said to have sensitive dependence on initial conditions
at x0 provided there is an r > 0 such that for every δ > 0 there is some y0 with |x0−y0| < δ
and a time τ > 0 such that

|φ(τ,y0)− φ(τ,x− 0)| ≥ r.

As the size of the perturbation is taken smaller and smaller, the point y0 may change and the
time τ may change, generally by getting larger. A set S is said to have sensitive dependence
on initial conditions at points in a set S provided that it has sensitive dependence on initial
conditions for all points x0 ∈ S. In general the points y0 can be taken outside the set S.
However, S is said to have sensitive dependence on initial conditions when restricted to
S provided that there is an r > 0 such that for every δ > 0 there is some y0 ∈ S with
|x0 − y0| < δ and a time τ > 0 such that

|φ(τ,y0)− φ(τ,x− 0)| ≥ r.

11



An attractor A is said to be chaotic if it has sensitive dependence on initial conditions when
restricted to A. Strogatz does not put it this strongly.

Note that the given system exhibits sensitive dependence on initial conditions at points in
a set A = H+∪H−. This is because x0 ∈ A converges to the origin, but we can take nearby
points y0 arbitrarily close but outside A which have orbits that will continue around the
second bow in the tie. Thus r = 1 would work.

However, the given system does not exhibit sensitive dependence on initial conditions at
points when restricted to the set A. On this set H+ ∪H− where V = 0 so

ẋ = y = ±x
√

1− x2.

Only some of the points in A, those starting near the origin in the unstable manifold
at the origin will grow exponentially until they round the bow and then return and die
exponentially. For a while the Liapunov exponent is positive for these points. However, the
x-coordinate of other points on the stable leg of the bow decreases exponentially, which do
not exhibit sensitive dependence. For such the Liapunov exponent is negative.

11. Consider the Guckenheimer-Williams branched surface cartoon of the Poincaré map for the
Lorenz system with standard parameters σ = 10,r = 28 and b = 8/3 (see Figure 3). It is a
two dimensional model of the attractor which can be thought of as a vertical planar region
where the sheets join at the line Σ between the rest points C±. On each side of the z-axis,
flow from Σ goes downward until it gets ejected outward near the unstable manifold at the
origin. It loops around each C± to and returns to Σ. As it sweeps around it spreads out to
the whole section Σ.

Figure 3: Guckenheimer-Williams branched surface cartoon of the Lorenz attractor.

Notice that the first return of the unstable manifold at the origin is an endpoint of Σ. The
first return map f : Σ→ Σ may be computed and is approximately given in Figure 4.

In this problem we consider a simplified version. f : [0, 1]→ [0, 1] by

f(x) =


2x, if 0 ≤ x < 1

2

2x− 1, if 0 ≤ x < 1,

0, if x = 1.

This map depicted in Figure 5 is called the “doubling map.” Prove that the dynamics given
by the doubling map f : I → I where I = [0, 1] exhibits sensitive dependence on initial
conditions. In fact, the orbit of any pair of distinct points in I gets at least 1/4 apart. Show
that there is a point z∗ ∈ I so that the orbit of the doubling map is dense in I.

12



Figure 4: Poincaré Map f : Σ→ Σ of the branched surface model

Figure 5: The doubling map.
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The key to analyzing the map is to represent numbers x ∈ I by their binary expansions

x = .a1a2a3 . . . =

∞∑
i=1

ai
2i

where each ai is either 0 or 1. Just as with decimal expansions, some numbers have two
different expansions, for example both .100 . . . and .01111 . . . represent the same number 1

2 .

The doubling map f(x) = 2x mod 1 amounts to a shift in the digits.

f

( ∞∑
i=1

ai
2n

)
= a1 +

∞∑
i=2

ai
2i−1

mod 1 =

∞∑
i=1

ai+1

2i

If x has a repeating binary expansion ai = ai+p then x = fk(x) has a periodic orbit with
period p.

To see that a number exists whose orbit is dense, we shall write it down. Let z∗ =
.0100011011000001010011100101110111 . . .. The pattern is that the first two digits are 0
then 1, the next eight are 00, 01, 10 and 11, the next 24 run through all three digit numbers
from 000 to 111 and so on. Eventually every finite string of ones and zeros is encountered
in z∗.

To see that its orbit under f comes arbitrarily close to any number, let x∗ ∈ I be arbitrary,
where

x∗ =

∞∑
i=1

bi
2i
.

To show that the orbit of z∗ comes within any δ > 0 of x∗, choose k so large that 2−k < δ.
Now the string .b1b2 . . . bk occurs in z∗ by construction. Some appropriate iteration then
makes fp(z∗) start with exactly the same first k digits as x∗. For this power

|fp(z∗)− x∗| =

∣∣∣∣∣
∞∑

i=k+1

a∗i − bi
2i

∣∣∣∣∣ ≤
∞∑

i=k+1

1

2i

=
1

2k+1

∞∑
i=0

1

2i
=

1

2k+1
· 1

1− 1
2

=
1

2k
< δ.

To prove that this map exhibits sensitive dependence on initial conditions when restricted
to I, we will show something stronger, namely that f is expansive: there is an r > 0 such
that for any x0, y0 ∈ I such that x0 6= y0, there is some iterate p such that

|fp(x0)− fp(y0)| ≥ r.

The doubling map is expansive with constant 1
4 .

Consider the intervals [0, 12 ) and [ 12 , 1) and the point {1}. We show that if x < y and
y−x ≤ 1

4 then |f(x)−f(y)| ≥ 2|x−y|. Consider two cases (i) when x and y are in the same
interval and (ii) when x and y are in different intervals. Now f(x) = 2x−K where K is 0,
1 or 2, depending on the interval. In case (i), f(x)− f(y) = 2x−K − 2y +K = 2(x− y),
so the distance is doubled in this case. In case (ii), the value of Ky for y is larger than the
Kx for x. Hence

f(x)− f(y) = 2x−Kx − 2y +Ky = (Ky −Kx)− 2(y − x) ≥ 1− 2|y − x|.

Now if |y − x| = y − x ≤ 1
4 then 1− 2|y − x| is positive and

|f(y)− f(x)| = f(y)− f(x) ≥ 1− 2|y − x| ≥ 1

2
≥ 2|y − x|.
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For any two points x0, y0 ∈ I, as long as the distance between xj = f j(x0) and yj = f j(y0)
stays less than or equal to 1

4 for 0 ≤ j < k then

|yk − xk| ≥ 2|yk−1 − xk−1| ≥ 2k|y0 − x0|.

This cannot hold for all k ≥ 0 so that eventually, |xk − yk| > 1
4 . Hence the Liapunov

exponent is positive too. [Argument taken from from Clark Robinson, An Introduction to
Dynamical Systems, Continuous and Discrete, Pearson Prentice Hall, 2004, sections 7.3,
10.2, 10.4.]

12. Show that the map has a unique fixed point. Is it stable?

xn+1 = exp(−x2n)

Observe that f(x) = exp(−x2) is bounded 0 ≤ f(x) ≤ 1 for all x. Thus the map sends
the interval f : [0, 1]→ [0, 1] to itself. Because f is continuous, the fixed point theorem for
continuous maps on compact intervals guarantees the existence of a fixed point x∗ ∈ [0, 1]
such that f(x∗) = x∗.

If there are any other fixed points, they would have to be in the interval [0, 1]. To argue
that the fixed point is unique, we need to show that x∗ is the only zero of the function
g(x) = x− f(x) = x− exp(−x2). For x ∈ [0, 1] the derivative is strictly positive

g′(x) = 1 + 2 exp(−x2)x ≥ 1 + 0 = 1

which means g(x) < 0 if x < x∗ and g(x) > 0 if x > x∗ so x∗ is the unique zero. One can
use the mean value theorem to see this: for example if 0 ≤ x < x∗ then

0− g(x) = g(x∗)− g(x) = g′(c)(x∗ − x) > 0

where x < c < x∗.

To see if x∗ is stable, from calculus we observe that the derivative

f ′(x) = −2xe−x
2

is minimized when x = 1√
2

so at the fixed point x∗ = f(x∗)

0 ≥ f ′(x∗) ≥ f ′
(

1√
2

)
= −
√

2 exp

(
−1

2

)
= −

√
2

e
> −1

thus |f ′(x∗)| < 1 and x∗ is stable.
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