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Notes on Cartan’s Method of Moving Frames

Andrejs Treibergs

The method of moving frames is a very efficient way to carry out computations on surfaces. Chern’s Notes} give
an elementary introduction to differential forms. However these are brief and without examples. In this handout,
following Chern, I review my version of the notation and develop a couple of explicit examples. Hopefully these
remarks will help you see what’s going on.

Derivation of the equations. We begin by quickly reviewing Cartan’s formulation of local differential
geometry in terms of moving frames. Our indices shall have the range i, j,k,... =1,2and A, B,C,...=1,2,3
and we follow the convention that sums are over repeated indices. Let S C R? be a surface and let the dot
product of R? be given (-,-). Let a local chart for S be given by the map X : U — S where U C R? is an
open set. In a neighborhood of a point we choose a local orthonormal frame, smooth vector fields {e1, es, e3}
such that

(1) (ea,ep) = 0ap,

the Kronecker delta. We choose the frame adapted in such a way that es is the unit normal vector and e;
and ey span the tangent space 7,S. The corresponding coframe field of one forms {w*} is defined by the
differential

(2) dX = w'e; + w?es.

In local coordinates (u',u?) € U the one forms are linear functionals of the form

(3) w(-) = Py (ut, u?)dut + Py(ut, u?)du?

where P and @ are smooth functions in U. du’ are the differentials for the coordinate functions u’ : U — R
which form a basis for the linear functionals on the vector spaces T{,1 ,2)U. Thus, for vectors which in local
coordinates have the expression

V= vl(ul,UQ)% + 02 (ut,u
the one form (3) acts by
w(V) = ot (uh, u?) Py (ut, u?) + v?(ut, u?) Py(ut, u?).
For simplicity sake we have only described one forms on U. But by the usual identifications between

X:U— X(U) or dX : Tiyr 2)U — T,S, the one forms can be interpreted as linear functionals on 7,5 as
well. For example, if we choose vector fields E; in U such that dX (E;) = e; then we may set @(e;) := w(E;).

tS. S. Chern, Euclidean Differential Geometry Notes (Math 140), University of California, Berkeley
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In particular, ©(e4) = §*4. It also means that if the metric takes the form ds? = (w!')? + (w?)? then w® is
automatically a coframe and the vector fields e; determined by duality @'(e;) = §%; are automatically the
corresponding orthonormal frame.

One forms can be integrated on curves in the usual way. If « : [0,L] — U is a piecewise smooth curve
where a(t) = (u!(t),u*(t)) then

L
/ W= / w(d/(t))dt = / Pydu' 4 Pydu?
a([0,L]) 0 a([0,L])

is the usual line integral. Two one forms may be multiplied (wedged) to give a two form, which is a skew
symmetric bilinear form on the tangent space. In general terms, if ¥ and w are one forms then for vector
fields Y, Z we have the formula

(0~ w)(Y,Z) =03(Y)w(Z) — HZ)w(Y).
In local coordinates this gives
(prdu’ + padu®) ~ (qudu' + gadu®) := (p1g2 — paqr)du' ~ du®.

Because three vectors are dependent there are no skew symmetric three forms in R? and the most general
two form is

B = A(u!, u®)dut ~ du?.
When evaluated on the vectors

V:vl(ul,u2)i+v2(ul,u Z:zl(ul,u2)i+22(u1,u
u

Nz
out ou?
the two form gives

B(V,Z) = A(u', u?) (vl(ul,uQ)zz(ul,uZ) — U2(u1,u2)zl(u1,u2)) .

A two form, say 3, may be integrated over a region R C U by the formula

/RB:/RA(ul,UQ)duldu2

where du'du® denotes Lebesgue measure on U.
The first fundamental form, the metric, has the expression from (2)

ds?

(dX,dX)
(whey + w?es, wle; + w?ey)
(wl)Q + (w2)2.

(4)

In this notation, the area form is w! ~ w?. That’s because by using (2) to write in terms of the e; basis, the
area of the parallelogram spanned by dX (9/0u) and dX (9/0v) is

0 0 0 0 g 0
1(O ) 2O\ 19\ 2(9\_ 1 20 O
“ <8u>w (81}) v ((%)w <8u> v <8u’av)'
The Weingarten equations express the rotation of the frame when moved along the surface S

(5) deA:ZwABeB.
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This equation defines the 3 x 3 matrix of one forms w4 ? which is called the matriz of connection forms of
E3. The fact that the frame is orthonormal implies that when §45 = (ea,ep) is differentiated, using (5),
0 =déap
=d{ea,ep)
(6) =(dea,ep) + (ea,dep)
:(Z wa%ec,ep) + (ea, ZwBC ec)

:wAB + wBA.

This equation says that the matrix of connection forms is skew so there are only three distinct ws?. Geo-
metrically it says that the motion of the frame vectors is already determined in large part by the motion of
the other vectors in the frame.
The forms ws® determine the motion of the normal vector and hence define the second fundamental form.
Thus in local coordinates, the second fundamental form is given using (4),(5) and (6),
II(-,-) = — (des,dX)
( ) = — <W31 (31 +W32 €es , w1e1 +w2e2>
7

:—w31®w17w32®w2

1 2
= w13®w —|—w23®w .
We may express the connection forms using the basis

3 1 2
wi” =h1w" + higw?,

(8)

1 2
wo® =hg1w! + hogw?.

Thus inserting into (7),
II(~7 ) = Z hij wi ® wj.

In particular, if one searches through all unit tangent vectors
Vg := cos(¢)er + sin(g)eq,

for which I~I(V¢,V¢) is maximum and minimum, one finds that the extrema occur as eigenvectors of h;
and that the principal curvatures k; are the corresponding eigenvalues. In particular, the Gaul and mean
curvatures are

K = ki ky = det(hi;) = hi1haa — hizhoi,

9
( ) H:%(k)l—l—k‘Q):%tr(hij):%(hll“rhgg).

Examples. We now work two examples showing that these forms may be found explicitly using the same
amount of work that it would take using other notations. The first is the case of surfaces of revolution

f(u) cosv
X(u,v) = | f(u)sinw
g(u)

where f and g are functions which describe the generating curve. For simplicity, let us assume

A+ =1,
ff+g3=0.
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Differentiating X we find

fcos v —fsinv
dX =| fsinv | du+ | fcosv | dv
(10) ; 0

= duey + fdves,

where we have taken a convenient frame

fcosv —sinwv —gcosv
e = | fsinv |, ey = cosv |, e3= | —¢gsinv
g 0 f

One checks that (1) holds. From (10) it also follows that
(11) w! = du, w? = fdv.

Hence the first fundamental form (4) is
ds® = du® + f? dv*.

Now let us compute the Weingarten equations. Since there are only three independent w4? we actually only
need to work out half of this:

flcosv ,f sin v ] §
dei =| fsinv | du+ | fcosv dv = fdves + Zdues
i 0 U
—cosv .
dey = —sinv | dv =—fdve; +gdves
0
—gcosv gsinv ..
de3 =| —gsinv | du+ | —gcosv | dv= —g.duel —gdves,
i 0 /

where we have used —jg = ff. It follows that the matrix of connection forms is

1 2 3

Wit wito@ 0 fdv gdu
wol we? wod | = —f dv 0 gdv
g .
—Zdu —gdv 0
wgl w32 o.)33 f g

Hence we may compute the second fundamental form (8) using (11)

w? =T du = !

i
—w,
f
3 _. g o
wo® =gdv = = w”.
f
Finally, we obtain the second fundamental form matrix
i
= 0
(hn h12> | f
hor haa ) g
0 Z
f
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Since h;; is diagonal, e; are the principal directions and k; = hy; are the principal curvatures. Therefore,

ko g Jith
f 2f f

As a second example consider the Enneper’s Surface

U — éug +uv2

— 1.3 2
X(u,v) = | v—3v° +ou
u? — v?
Differentiating yields
1—u?+0? 2uv
dX = 2uv du+ | 1=+ u? | dv= (1+u®+v?) (due; +dvey)
2u —2v
where we have taken the frame
1—wu?+ 02 2uv —2u
1+ u2 + 02 1+ u?+0? 1+ u?+0?
o — 2uv 6 — 1—v? 4 u? 6 — 2v
P Trer e |0 Tt |07 | e 2
2u —2v 1—u?—v?
1+ u2 + 02 1+ u2 4+ 02 1+ u2 + 02

Thus we have
u)1=(1—+—uz—|—v2)du7 w2:(1+u2+v2)dv.
It follows that

dez = (1 +u? + 2)a L dues + . 62 d
e; = v v )~ | ——— | dues+ ———— u
’ ou \ 1+ u? 4+ v? STl w402 9
0
0 1 1
1+ v +0?) [ —s— ] d —_— 2 dv.
+(1+u —H))av <1+u2+v2> vest 1 2 v
Hence
2du 2
w13:_<e17de3>: 3 2: > " 17
o s (1 + u? + v?)
—2dv -2
w23 = — <e2,d93> = 5 5 = 5 5 20.)2.
I+u®+v (1+ u? + v?)
Thus

2

h = —h =,
11 22 (1 +u2 —|—1}2)2

hia =0

so H=0and K = —4 (1 +u2+02) ",
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Covariant dlﬁ'erentiation. Covariant differentiation of a vector field Y in the direction of another vector
field V = Ev —7 on U is a vector field denoted Vy Y. It is determined by orthogonal projection to the
tangent space VVY = proj(dY (V)). Hence, in the local frame,

Vve; := proj (de;(V Zwl

Covariant differentiation extends to all smooth vector fields V,W on U and Y, Z on S and smooth functions
@, ¥ by the formulas

(1) VevigpwZ = ¢VvZ + ¢V Z (linearity),

(2) Vv(¢Y +9¢Z) = X(9)Y + ¢VvY + X(¥)Z + Vv Z (Leibnitz formula),

(3) VY, Z) =(VvY,Z) + (Y,VvZ) (metric compatibility).
With these formulas one can deduce Vv (Z yiei). As an example, we derive the formula for the geodesic
curvature of a unit speed curve «(t) € U. Choose the frame so that say, es = dX (/). Then {es, —e1} is a
right handed frame and the geodesic curvature is given by

—kge1 = Voes =wr'(a')e;.

For example, consider the meridian curves of the surface of revolution in the example whose tangent vectors
is ez. By (10) and (11) we have
, 10 f
kg =wi?(e) = fdv =
st =g <f8v> /

Thus we recover the result that « is a geodesic if f = 0. In a more general description we can also understand
VzY where Y, Z are vector fields on S.

Gaufl equation and intrinsic geometry. We will have to differentiate (2) and (6) once more. The
exterior derivative d is the differential on functions. The exterior derivative of a one form (3) is a two form

given by
P P;
dw = <8u2(u1,u2) - gé(ul,ﬁ)) du' ~ du®.

Thus d? = 0 because, for functions f,

() = (S5t it + D) ao?)

0? 92
- («W&iﬂ(ul’uz) - 3u2821(u17u2)> du' ~ du® = 0.

The formula implies that if f(u!,u?) is a function and w a one form then
d(fw) =df ~ w+ fdw but dwf)=dwf —w~ df.

Green’s formula becomes particularly elegant:

/ wz/ P1du1+P2du2=/ (8]2_819;) dulduQ:/ dw.
OR OR r \Ou Ou R

Differentiating (2) and (5),

0=dX =d (Y wie;) =D du'e;— Y w'~ de;
= Zdwiei + Zwi ~ w;%ec,
0= d%, =d (Z wABeB> =Y dwaBep - Y waldep
=Y dwaep =Y wa®~ wpec.
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Now collect coeflicients for the basis vectors e; and ec:

0=duw — E W'~ wi?,

(12)
= deC — ZwAB -~ wBC.

These are called the first and second structure equations. By taking also the es coefficient of d?X,

_ J .3
0= E w wj

so that by (8) and (12.2)
0= Zwi -~ (hijwj) = (h12 — hgl)wl -~ w2.

It follows that h;; = hj; is a symmetric matrix. In the text, we saw this when we proved the shape operator
—des was self adjoint.

The second structure equation enables us to compute the Gaufl curvature from the connection matrix.
Indeed, by (8),

dw? :ZwlB ~wp?=wP~ wy? = —w® ~ wy?
(13) == (hnwl + h12W2) ~ (haw' + h22w2)
= — (h11h22 - h122) wl -~ w2 = —le -~ w2.

The remarkable thing is that the conditions (6) and (12)

do' =Y W~ wj’
(14) 2 ’

wij +wjl =0

determine w;? uniquely. Since w’ is known once the metric is known by (4), this says that wi? and thus K
can be determined from the metric alone. This is Gaufl’s Theorema Egregium.

Lemma. There is a unique one form wi? which satisfies (14) on U.

Proof. Try to determine the coefficients in a basis. Denote the two forms

dw' = a;(ut, u?)w! ~ W2

We seek functions p; so that wi? = —ws! = pyw’ + pow?. Equations (14) become

dw! = qw! ~ W? = W~ Wyl = w? ~ (—plu)1 - p2w2) =prw! ~ w?

dw?® = aw' ~ W =W~ w2 =W~ (P! FPaw?) =prw! ~ W

1

Thus the coefficients are uniquely determined. We set w12 = —ws!' = ajw! +asw? to solve the equations. O

If we are given an abstract Riemannian two manifold S determined by local coordinate charts, transition
functions and a metric
ds® = g11(u,v) du? + 2g12(u, v) du dv + goa(u, v) dv?,

without necessarily having the embedding map X:S — R3, the notion of an orthonormal coframe {w®}
still makes sense by diagonalizing the metric (4). Hence a moving frame {e;}, wedge product ~, exterior
derivative d, length and area all still make intrinsic sense. By the lemma we obtain the connection form w2
and thus covariant differentiation and the curvature using (10), all depending only on intrinsic quantities
and computations in local charts.
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Computation of curvature from the metric. Let us compute the curvatures of a pair of metrics using
this scheme. Here is where the efficiency of the method will become apparent.
Let us compute the curvature of a metric in orthogonal coordinates. For simplicity sake, I take the
coefficients to be squares. Thus we are given the metric
ds? = E?du’® + G*dv?,
where E(u,v), G(u,v) > 0 are smooth functions in U. It is natural to guess that

wl = Edu, w? = G dv.

Then, differentiating,

E,
dw' =E, dv~ du = w® ~ wy' = Gdv~ & du.

dw? =G du~ dv = w! ~ w1? = Edu~ %dv.

Thus we may take

u E’U
wZ=—wy! = fdv — 6du.

Hence by differentiating again,

0 (G 0 (FE
— 1,\ 2:— ~ = 2: _— —_ _— il -~
Kw w KEGdu~ dv = dw; <8u(E)+8v (G)>du dv

5o (3(2)2(5)

As a second example, let’s do a metric which is not in orthogonal coordinates. To find the curvature of
the metric

from which it follows that

ds* = du® + 2ududv + (1 + v?)dv?

in the set where 1 — u? + v? > 0 we first complete the square:

2
ds* = (du + udv)* + (\/1 —u? +v2dv) .
Hence we may take as an orthonormal coframe

wl =du+udv, wr=1—-u2+02dv

which means that

1
dw! = du ~ dv =w?~ (du)
V1 —u? 402
— 1
dw?® = 7,”6[11’\ dv = w' ~ (du)
V1 —u? 402 V1 —u? + 02
so that .
wl= — du.
It
Thus v
—Kw'~w? = —KvV1—u2+v2du~ dv=dw?®= f—B/QduA dv
(1 —u?+0v?)
SO

- v
(1—u2+02)2.



