Math 6410 § 1. First Midterm Exam Name: Golutions
Treibergs Oct. 4, 2023

1. Let f(t,x) be continuous for all (t,x) € R x R? and let o € R Suppose that there is
L € R such that

f(t.x) = f(t,y)| < Lle—yl,  for all (t,2),(t,y) € R x R™. (1)

Show that there is and & > 0 and a unique functiony € C1([0,¢], R%) that satisfies the initial
value problem. Do not just quote theorems. Provide as detailed a proof as you can.

dx
x(0) = g

Finding a solution of (2) is equivalent to finding a continuous solution of the integral equa-
tion

x(t) = zo —l—/o f(s,z(s)) ds for ¢ € [0, ¢]. (3)

If z(t) is a C! solution of (2) then by the Fundamental Theorem of Calculus

x(t) = z(0) —1—/0 fl—i(s) ds = x —|—/0 f(s,z(s)) ds.

On the other hand, if x(t) is a continuous solution of (3), then since the function s —
f(s,z(s)) is continuous, then by the other Fundamental Theorem of Calculus, the right side
of (3) is differentiable, and its derivative is

dzx

) = 0+ F(t,2(1)),

which is continuous. Hence z(t) is a C* solution of the differential equation of (2). Moreover,
since z(0) = g + 0 in (3), z(t) also satisfies the initial condition in (2).

Solubility of the integral equation shall follow from the Contraction Mapping Theorem.

Theorem 1 (Contraction Mapping Theorem). Let X be a Banach Space (complete normed
linear space) with norm || e ||. Suppose L : X — X be a mapping which is a contraction:
there is a 6 € (0,1) such that

I Llz] = LI < Blle —yll,  for allz,y € X. (4)

Then there is a unique fized point z € X such that L[z] = z.

Proof. Choose any point zg € X and consider the iteration sequence defined recursively by
z1 = L[z0] and zp41 = L[z,] for n =1,2,3,.... Using (4), we see by induction that

22 — 21| = [[£]z1] = Llz0]l| < O|lz1 — 20|
25 — 22|l = ||L]z2] — L[z1]]| < Ol|w2 — 21]] < 63|z — 20|
(5)
2n+1 = 2nll = [|1£]2n] — Llzn-1]ll < Ol|7n — 2n—1]] < 0™[|21 — 20|

We show {z,} is a Cauchy Sequence in X. Choose 7 > 0. Let N € R be so large that

N

1-6

21 = 2oll <.



Then for any p,q € N such that p > N and ¢ > N, either p = ¢ in which case ||z, — 24| =
0 < n or, because ||z, — 24|| = ||2q — 2p|| Wwe may suppose, after swapping values if necessary,
that p > ¢. Then using a telescoping sum, the triangle inequality, (5) and the geometric
sum formula,

2o = zqll = [(zp = Zp—1) + (2p—1 = Zp—2) + - + (Zg41 — 24|
<llzp = zp-1ll + llzp-1 = zp—2ll + -+ + ll2g+1 — 2) |
<O |z — zol| + 07721 — 2ol 4 -+ 67[z1 — 2o
< 1 (gp*qfl +OPI2 4 49y 1) |21 — 20l

1 — gr—4a 07 oN
=0 (L2 b sl = 12 gl = sl < gl = 2l <

because ¢ > N. Hence {z,} is a Cauchy Sequence.

Because X is complete, there is a limit point z € X such that

z= lim z,.
n—oo

By continuity (4) we may exchange £ with the limit

z= lim z,4; = lim L[z,] =L [ lim in] = L[z],
n—00 n—00 n—00

so z is a fixed point. The fixed point is unique. If there were another, y = L[y], then
ly — 2l = [I£]y] = Lz]]| < Olly — =]

SO
(1=0)y—=]<0

implying ||y — z|| = 0 so y = z since 1 — @ > 0. Thus there is only one fixed point in X. O

Choose any positive ¢ < 1/L and let I = [0,¢]. Define the Banach Space of continuous
function X = C(I, R%) with sup norm

If1l := sup | f(2)].
tel

Define the Picard operator for f € X and t € I by

LIfI(t) = zo +/0 f(s,2(s)) ds.

We seek a fixed point € X of the Picard operator « = L[z] which is a solution of the
integral equation (3).

L maps X to X. To see this, for any x € X, since s — f(s,x(s)) is continuous, then by the
Fundamental Theorem of Calculus the indefinite integral £[z] is continuous, so in X.



Finally, £ is a contraction on X. Choose z,y € X. Then for ¢t € I, using (1),

L[] (t) - Ll)(1)] = |0 + / £(s,x(s)) ds — o — / f(s.y(s)) ds

/O f(s,2(5)) — f(s,y(s)) ds

< / 1£(s,2(5)) — F(5.9(s))]| ds
§/0 L|z(s) — y(s)| ds
< / Lz —y] ds

= Lt[lz — yl| < Lef|z — .
Taking supremum over ¢ € I,
I1£[z] = LIl < Lellz -y

Thus £ is a contraction in X with constant 0 = Le < 1.

By the Contraction Mapping Theorem, there is a unique x € X which is a fixed point of L,
hence a solution of the integral equation and the Initial Value Probelm (2).

. Consider Griffith’s model for a genetic control system, where x and y are proportional to the
concentration of a protein and the messenger RNA from which it is translated, respectively,
and p > 0 is a rate constant. Let xg > 0 and yg > 0.

=y —ux z(0) =z
. z? (6)
Q*W*y- y(0) = yo

Assume that the solution of (6) exists for all t € [0,T]. Find a bound on the solution at
time t. Uning your bound, explain why the solution of (6) exists for allt € [0, 00).

[You may use theorems, but state carefully any theorem that you use and verify that the

hypotheses hold.]

Let us write (6) as a vector equation.

B e b(2) = o),

dt
x(0) = zp.

0= () == (o) 4= (7"0) 0= (assan)

f(z, 1) is a rational function so it is C¥ in (z,u) for all k. We estimate the solution using
Gronwall’s Inequality.

where

Theorem 2 (Gronwall’s Inequality). Let a, 8 be real constants such that 5 > 0. If u(t) is
a continuous function satisfying

u(t) < a+ ﬂ/o u(s) ds, for allt € 10,7, (8)



. then
u(t) < e’ for allt €10,T7. (9)

Estimating the operator norm and length, for all z € R2,

JA <Al = Vi2+2,  [b(z) < 1.

Estimating the integral equation, for ¢ € [0,T],

12(8)] = z0+/0 Ax(s) + b(2(s)) ds

t
<laol + [ 143(5) + bla(5)] ds
0
t
<Jaal + [ [42(5)] + bGa(5)] ds
0
t
<laol + [ 14N 2]+ 1ds+
0
t
< Jaol + -+ 141 [ )] ds
0
t
<laol + T+ 41 [ Jz(s)l ds
0
Thus applying Gronwall’s Inequality to u(t) = |2(t)|, o = |up| + T and 8 = [|A|| = /2 + 2

we have for all t € [0,T],

|2(0)] < (20| + T)eVHH2, (10)
To see that the solution exists on all of ¢ € [0, 00), we invoke the global existence theorem.

Theorem 3 (Global Existence Theorem). Let f(x,u) : R x R? — R be a C' function.
Then for every (zg, 1) € R x RYx, the initial value problem

d
= = f(z ),
x(0) = 2.

has a unique mazimal C' solution ~(t) defined on I, , = (a,b) its mazimal interval of
existence. If b < oo, then |y(t)| — 0o as t — b—.

The right side f(z, ) of (7) is C! so we may apply the Global Existence Theorem. Let ~y(t)
be the maximal solution of (7) and suppose for contradiction that it does not extend to
infinity so b < co. Then by the Global existence theorem, the trajectory exits any compact
set, i.e., there is a time tg < T < b such that

UT)| > (|20] + b)e? V2,

But this contradicts the estimate (10) we obtained at ¢ = T, namely the solution existing
on [tg, T] satisfies

h’(t” < (|Zo‘ +T)et\/“27+2 < (|ZO| +b)eb\//ﬂ7+2

for all ¢ € [tp, T]. Thus, b is not finite and the solution (t) exists for all ¢ € [tg, 00).



3. Consider again the ODE from Problem 2, where p > 0 is a constant.

T=y—px z(0) = g
o a? (11)
Q*W*y y(0) =wo

Let xg > 0 and yo > 0. Explain why the solution may be differentiated with respect to .

oy
T, — (T, T 9
aM( w) and a,u( w) at T > 0

The differentiability of the solution with respect to parameters follows from the Global
Differentiable Dependence Theorem.

Theorem 4 (Global Differentiable Dependence Theorem). Let f(x,p) : RY x RP — R be
a C* function. Then the map D — R? given by the solution (t,z, i) — 2(t,Z, i) of

How big are

(12)

is C* in the domain
D={(t,z,p) ER"xRP:tel;;}.

where Iz is the mazimal interval of existence for the solution of (7). Moreover, the
function

W(t) = D,z(t; T, i)
satisfies the variational equation

aw

— = D.f(2(t,2,1), ) W(t) + Dy f(2(t, 2, ),

dt (13)

The right side of equivalent vector equation (7) is C* for all k beause it is a rational function
without singularities. The Global Differentiable Dependence Theorem tells us that the
solution z(t,z,u) is differentiable wrt p for all (¢,Z, ). The partial derivatives are the
components

ox

——(t, 2, )
W(t) = D, z(t, %, fi) = gﬂyt
8u( 225 f1)

To estimate the size of the partial derivatives, we may apply Gronwall’s Inequality to the
integrated version of the variational equation. For ¢ > 0 such that ¢ € I>

|—\o+/Df 5.2, 1) W(5) + Dy f(=(5, 2. ) ds

t

< ; 1D f(2(s, 2, ), W[ W (s)| + |Dpf (2(s, 2, 1) | ds

t
S/ Vi +3[W ()] + (|z0] + t)e'VI¥+ ds
0
t
< t(|z0| + t)etVHH2 +/ Vi?+3|W(s)|ds
0



where we have used

D f(x(t, 2, 1), 1) = < o —11> i < ) >

2z
ey U

o

=

-1
Dutzm=("y o)t
that are estimated using 2|z| <1+ 2% and (10),

ID=f(2(t, 2, 1), )| < V/u? + 3,

By the Gronwall Inequality, we find the desired estimates on the derivative. For 0 <t such

that t € IEJ_“

(W) < t(lz0] + t)et\/’met\/’m < t(|zo] + t)th\/uTr?a.
. Consider the first order differential equation

dz

— t

& ),

where f(t, ) is smooth and periodic in t: f(t 4+ 1,z) = f(t,x) for all z and t in R.

(a) Define the Poincare map for this differential equation.

(b) Suppose f(t,x) = A(t)x — z?, where 0 < a < A(t) < . Prove that the differential
equation has at least one nontrivial periodic solution.

By the Global Existence theorem, the initial value problem

dx
PREAGR (14)
z(0) = zo.

has a solution x(¢; z¢) which is defined whenever ¢ € I, the maximal interval of existence.
The Poincaré Map in the context of T'= 1 periodic solutions is the time-one map

p(zo) = z(1;z0)
provided 1 € I,,. There is a T-periodic solution z(t, ) whenever xq is a fixed point of the
Poincaré Map xo = p(x0).

In the special case f(t,x) = A(t)z —x? where A(t) is a smooth (C* for any k) T = 1 periodic
real function. Under the hypothesis 0 < o < A(t) < 3, we see that

fla)=At)a—a®>>a* —a?=0

f(B)=A®B-p*<p* -5 =0.
We wish to show g is defined for z¢ € [«, 8]. First, we observe that for any xg € [a, ],
there is a 7 > 0 such that o < z(t,z9) < f for 0 < t < 7. By the Global Existence

Theorem (or Local Existence Theorem), we know that for all zq, x(¢,x¢) is defined for ¢
in a neighborhood of ¢ = 0. By the continuity of solutions, if @ < zg < 8 then there is a



7 > 0 so that o < z(t,z9) < 8 for 0 < t < 7. On the other hand if zy = 3, we know that
z(0,8) = f(0,8) < 0. Since z(t, ) is differentiable in ¢,

dx . x(t,p) -8

Thus there is a 7 > 0 such that for every 0 < t < 7

t—0
so z(t,x0) < B. Similarly, if 2o = « then there is a 7 > 0 such that x(t,z¢) > o whenever
o<t<r.

To finish the claim, we argue both that the solution exists for ¢ € [0,1] and that o <
x(t,zg) < B for all ¢ € [0,1]. If for some zg € [o, f] the maximal interval I, = (p,q) does
not include ¢t = 1 then x(¢,x() exits any compact set: there is 0 < t; < p < 1 such that
|z(t1,2z0)| > B. If on the other hand for some xy € [, 8] the trajectory exits the interval,
then there is 0 < t; < 1 such that x(t1,29) ¢ [, 8]. In either case x(t1,20) ¢ [o, G].

By continuity of x(¢,z¢) there is a first 0 < t3 < t; such that z(t2,z9) € {a, f}. In other
words

<0

to =sup {7 € (0,t1) : 2(s,20) € (o, B) forall 0 < s < 7}.
We have already shown that there is a 7 > 0 for every zg € [«, 8]. By continuity x(ta, xo) =
a or x(ta,x0) = B and x(s,z) € (a, ) for all 0 < s < 7.
Let us rule out the possibility z(t2,29) = 8. The argument in case z(t2, xg) = « is similar.
Since z(s,z9) < f for 0 < s < t3 it follows that

. . x(s,mo) — B
i (ta, o) = Jm_ s m0) 8 S—)tg

> 0.

But this contradicts the ODE since

i(t2,20) = f(t2,2(t2,20)) = f(t2,8) <0.
This completes the claim that for xg € [a, ] the solution exists for 0 < ¢t < 1 and that
x(t,zg) € [, ] for all 0 < ¢ < 1.

This implies that ([, 5]) C [a,5]. By the Global Differentiable Dependence Theorem
(or Global Continuity Theorem) p(z) is continuous in zy. By the Intermediate Value
Theorem, p which maps a compact interval to itself has a fixed point z; € [, ] such that
21 = @(x1). Thus the solution x(¢,x1) is a nontrivial T' = 1 periodic solution.

5. Find a matriz T that such that T"*AT = J, the Jordan form, and check your answer.
Using your J, find the solution to & = Az, x(0) = c.

1 2 3 1
A= 0 1 4 ) c= Co
0 0 1 cs3

The eigenvalues are the diagonals A = 1 with algebraic multiplicity three. An eigenvector satisfies

0 2 3 1
O=(A-AOVi=|0 0 4 o |,
00 0 0



As A — AI has rank two, V; generates the one dimensional eigenspace. It follows that the Jordan
form of this matrix is a 3 x 3 block

11 0 10 0 01 0
J=101 1]=lo1 o0o|*+*]0o o0 1 |=I+N.
00 1 00 1 00 0

To find T, we write the cyclic vectors by inspection.

0 2 3 0 1
(A=ADVa=10 0 4 =10 =W
0 0 O 0 0
02 3 0 0
— — 3 = 1 =
(A=ADVs=10 0 4 Z ! V2
1
00 0 i 0
Take
1 0 0
= = 1 3
T=Wilvalvs)=|o L -3
00 1
To check T~'AT = J we compute
12 3|10 o0 11 0 10 0 110
= 1 3 = 1 5 = 1 3 =
AT=10 1 4|0 L -2& 01 2 0L -2 1lo 1 1|=JT
1 1 1
00 1)\o o0 1 00 1 o0 1} 00 1
Using IN = N1,
e 0 0 1t 3 1t i
et — ptUI+N) _ jtI tN _ 0 e 0 01 ¢ — ot 01 ¢
0 0 € 0 0 1 0 0 1



The solution of & = Az, £(0) = ¢ is given by

1

-1
z(t) =ele=eTIT c=TeT le=¢' |

o

N|—=

o

1 2t 3t+ 42
0 2 3+8t
0 0 8

0

N

o

Sl

0|

3t? 100 1
t 02 3 >
1 0 0 c3
2t 3t + 47 a
1 4t Co
0 1 c3



